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Abstract

In this thesis, we investigate the influence of electric currents on magnetic structures

in bulk materials, such as manganese silicide (MnSi). This research is motivated by

recent experiments in spintronics suggesting that electric currents influence mag-

netic structures by spin transfer torques. The so-called “spin transfer” describes the

transfer of angular momentum produced by a flow of electrons through an inhomo-

geneous magnetization configuration.

We focus on magnets without inversion symmetry, where weak spin-orbit cou-

pling leads to the formation of magnetic helices with a long pitch. These helices

pin only very weakly to disorder and the underlying crystalline lattice. Specifically,

we study the helimagnet MnSi which exhibits a particularly interesting phase, the

so-called “A-phase”. It is well described by a superposition of three helices and a

uniform magnetic moment forming a lattice of anti-Skyrmions.

To formulate an effective theory for the magnetization direction, we start from

the Landau-Lifshitz-Gilbert equation including reactive and dissipative spin transfer

torques. In particular, we characterize the different magnetic structures by a few

time-dependent variables and determine their equations of motion.

As a main result, we find that the current does not alter the direction of the

single helix but has an influence on the A-phase which is slightly anisotropic. Both

results are in agreement with experimental observations in MnSi. We find, that on

the one hand the direction vectors of the three helices rotate, but on the other hand

the plane defined by the direction vectors tilts. Both effects are linear in the strength

of the current. Moreover, we illustrate that similar to the topological Hall effect a

non-zero Skyrmion density is the significant link between the magnetic structure

and the current.

Apparently, our effective theory explains well the experimentally observed dis-

ortion of the A-phase by currents.
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Introduction

In this thesis, we examine the influence of an electric current on magnetic struc-

tures. Motivated by recent experiments performed with manganese silicide (MnSi),

which is a chiral itinerant magnet, we study this material as an explicit example.

However, most of the displayed formalism is also applicable to other chiral magnetic

materials. In particular, helimagnetical structures appear in a lot of materials, e.g.

in FexCo1−xSi, CrSi and FeGe. Moreover, also the topologically non-trivial mag-

netic structure of MnSi, the so-called “A-phase”, is experimentally detected in a

second material: Münzer et al. have verified the magnetic structur of the A-phase

in FexCo1−xSi for x = 0.2 and x = 0.25 [1].

Section 1 constitutes a description of some general properties of MnSi. Moreover,

we present a temperature versus magnetic field phase diagram of MnSi and describe

the different magnetic phases. The phases that appear are the helical phase, the

conical phase and the A-phase. The experimental setups to detect these three phases

by neutron scattering are explained in Section 2.

In Section 3, we focus on the theoretical description of the different magnetic

ground states in the framework of a Ginzburg-Landau theory. First, we recapitu-

late the results for usual ferromagnets without spin-orbit coupling. Afterwards, we

examine magnets without inversion symmetry in general, and we observe that weak

spin-orbit coupling leads to the formation of magnetic helices with a long pitch. In

the last part of this Section, we give reasons for the stabilization of the A-phase.

In Section 4, we try to motivate the investigation of the influence of a current on

magnetic materials. In Section 5, we introduce the Landau-Lifshitz-Gilbert (LLG)

equation including reactive and dissipative spin transfer torques. The LLG equation

describes the dynamic evolution of the local magnetic moments. Starting from this

equation as an ansatz, we determine the equations of motion for a general magnetic

structure that can be described by a finite number of variables.

In Sections 6 and 7, we apply the method introduced in the previous Section to

the helical phase and the A-phase. As a basic result, we find that a current leads to

a drift of the magnetic configuration. Besides in the helical phase, the current does

not alter the magnetic texture, but in the A-phase it leads to a rotation and a tilt

of the magnetic pattern.

Section 8 discusses the topological Hall effect that occurs in the A-phase and

identifies this phase as a lattice of anti-Skyrmions. Finally, in Section 9, we study a

derivation of the LLG equation from a variational principle, where the origin of the

Berry phase leading to the topological Hall effect becomes evident.
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1 Properties and Magnetic Phases of MnSi

Manganese silicide (MnSi) is a weakly ferromagnetic itinerant metal with an experi-

mentally measured Curie temperature of Tc ≈ 29 K. It can be produced in ultra-pure

form with a mean free path of about 5000 Å. The intermetallic compound forms the

cubic crystal structure B20 with four Mn and four Si atoms per unit cell. The

atoms are in the positions (u, u, u; 1
2 + u, 1

2 − u, ū; 1
2 − u, ū,

1
2 + u; ū, 1

2 + u, 1
2 − u)

with uMn = 0.138 and uSi = 0.845. In this structure, the Mn and the Si atoms are

displaced in opposite 〈111〉 directions from the fcc position [2].

Figure 1: Crystalline structure of MnSi. Picture taken from Ref. [3].

MnSi crystallizes in the noncentrosymmetric cubic space group P213. The corre-

sponding point group T consists only of cyclic permutations of x̂, ŷ and ẑ, of rotations

by π around the coordinate axes, and of combinations thereof. However, the crys-

talline structure of MnSi has no inversion symmetry. Other noncentrosymmetric

itinerant magnets with B20 crystal structure are, for example, FexCo1−xSi, CrSi

and FeGe.

Fig. 2 shows the magnetic phases of MnSi as a function of temperature T and

applied magnetic field B. In addition to the usual ferromagnetic and paramagnetic

phases of a ferromagnet, MnSi exhibits three other magnetic phases.

At ambient pressure and small applied magnetic field MnSi develops a left-

handed helical magnetic order below a critical temperatur of Tc = 29.5 K [7, 8, 9].

The ordered magnetic moment ~M is perpendicular to the propagation vector ~q of

the helix, and its low temperature magnitude is of the order of 0.4µB. Its origin

is the asymmetric Dzyaloshinskii-Moriya (DM) spin-orbit coupling [9, 10, 11, 12]

due to the lack of inversion symmetry in its B20-type cubic structure. The DM

interaction favors canted spin structures and therefore precludes the establishment

of a ferromagnetic ground state. The period of the helix, approximately 190 Å, is

large compared to the lattice constant, a ≈ 4.56 Å. This large separation of length

scales leads to an effective decoupling of the magnetic and atomic structures. Be-

sides the ferromagnetic and the DM interaction, there are very weak crystalline field
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1. Properties and Magnetic Phases of MnSi

Figure 2: Magnetic phase diagram of MnSi as a function of temperature and applied

magnetic field (see text for details). Pictures taken from Ref. [4, 5, 6].

interactions which break the rotational symmetry [9, 10]. These occur only in at

least fourth power in the small spin-orbit coupling and align the direction of the

helix along the cubic space diagonal 〈111〉. The typical size of magnetic domains in

the helical state is about 104 Å.

Below Tc, with an applied magnetic field ~B exceeding the critical field Bc1 ≈
0.1 T, the helical state evolves into a conical magnetic phase. A conical configuration

of the magnetization is basically a helix with an additional uniform magnetization

in the direction of the spiral wave vector ~q. Furthermore, the magnetic field pins ~q

parallel to ~B. The cone angle smoothly decreases to zero at field strength Bc2 ≈
0.6 T. For a magnetic field exceeding Bc2, the effects of the DM interaction are

suppressed, entailing a ferromagnetic state.

For temperatures just below Tc an additional phase, referred to as the A-phase,

is stabilized in a finite field interval for ~B ‖ 〈100〉, as shown in Fig. 2. Measurements

of the specific heat and the susceptibility as well as neutron scattering experiments

show that the A-phase is a distinct phase with a first-order phase transition sepa-

rating it from the conical phase [13]. The spin orientation in the A-phase exhibits a

hexagonal symmetry perpendicular to the small applied magnetic field. This mag-

netic structure can be described approximately by a vectorial superposition of three

helical states plus a uniform magnetic component, generating an anti-Skyrmion lat-

tice, where the magnetic field vector ~B is perpendicular to the wave vectors of all

helices [4].

A real-space picture of such an anti-Skyrmion lattice, almost identical to the spin

orientation in the A-phase, is shown in Fig. 3. It illustrates the doubly twisted mag-

netic structure around an anti-Skyrmion center. In contrast to vortices, Skyrmions

4



1. Properties and Magnetic Phases of MnSi
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Figure 3: Spin orientation in the A-phase. Left: Three dimensional sideview il-

lustrating the doubly twisted magnetic structure around an anti-Skyrmion center.

Right: Projection from above.

do not contain a singularity at the core of the defect, i.e. the spin orientation is

smooth everywhere. Furthermore, the magnetic pattern in the A-phase pins very

weakly in the 〈110〉 direction of the crystal.
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2 Neutron Scattering: Experimental Setup and Results

Most of the work reviewed in this Section has been published in Refs. [4, 14]. In

general, helimagnetic order can be observed in neutron scattering experiments in

the form of Bragg peaks located on a sphere in reciprocal space. The radius of this

sphere is proportional to the inverse pitch of the helix. The position of the peaks

depends on weak crystalline field interactions, which may lead to a position locking

of the peaks.

In MnSi, where the helical wavevector ~q is along a threefold axis of the cubic

structure, there are four equivalent magnetic propagation vectors ~q1 ‖ (111), ~q2 ‖
(11̄1̄), ~q3 ‖ (1̄11̄), and ~q4 ‖ (1̄1̄1). The chirality of the magnetic structure is single-

handed as determined from polarized neutron scattering. Consequently, there are no

chiral domains. The same helix is observed at ~q and −~q. With unpolarized neutrons

there are thus eight magnetic peaks around each nuclear Bragg peak, corresponding

to ±~qk (k = 1, . . . , 4).

Since the direction vector of the helix ~q tends to align parallel to an applied

magnetic field in a large part of the magnetic phase diagram, neutron scattering as

a function of magnetic field ~B has been performed such that the magnetic field is

perperdicular to the indicent neutron beam [15, 16, 17], as shown in Fig. 4.

In contrast, Mühlbauer, et al. have prepared the incident neutron beam parallel

to the applied magnetic field, as shown in Fig. 5.

Fig. 6 shows typical data recorded for two different samples. The panels (A) to

(C) are measurements of sample 1, whereas (D) to (F) are taken from a different

sample 2. Panels (A) to (E) are measured in the setup, where the incident neutron

beam is parallel to the applied magnetic field ~B. Only panel (F) shows data that

has been taken using the setup shown in Fig. 4. All data shown represent the sum

over rocking scans with respect to the vertical axis through the sample.

Figure 4: Neutron scattering setup; the applied magnetic field ~B is perpendicular

to the incident neutron beam (see Ref. [14]).
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2. Neutron Scattering: Experimental Setup and Results

Figure 5: Neutron scattering setup; the applied magnetic field ~B is parallel to the

incident neutron beam (see Ref. [4]).

Figure 6: Typical small-angle neutron scattering (SANS) intensities (see text for

details); the color scale is logarithmic to make weak features visible. A typical

background measurement above Tc and ~B = 0 is substracted in all panels except for

figure A, light blue square (see Ref. [4]).
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2. Neutron Scattering: Experimental Setup and Results

(A) shows the scattering intensity in a zero-field-cooled state at temperature T =

27 K and | ~B| = 0 for a 〈110〉 scattering plane. One observes the helical magnetic

order along 〈111〉.

(B) displays the intensity pattern in the A-phase. Six spots emerge on a regular

hexagon. The measurement was done with the same orientation as in panel

(A), but at temperature T = 26.45 K and magnetic field | ~B| = 0.164 T.

(C) shows the six-fold intensity pattern in the A-phase for a random orientation

of the sample measured at temperature T = 26.77 K and magnetic field | ~B| =
0.164 T.

(D) Helical order in sample 2 in the zero-field-cooled state at temperature T = 16 K

and magnetic field | ~B| = 0.

(E) The A-phase in sample 2 with same orientations as in panel (D) at temperature

T = 27.7 K and magnetic field | ~B| = 0, 162 T.

(F) The A-phase as measured in a conventional setup at temperature T = 27.7 K

and magnetic field | ~B| = 0.190 T. A small residual intensity due to the conical

phase is observed (spots 9 and 10), whereas spots 6 and 8 correspond to those

in panel (E).

The neutron scattering measurements were performed at the diffractometer MIRO

at FRM II at the Technische Universität München. All data at finite magnetic field

were measured after zero-field-cooling to the desired temperature, followed by a field

ramp to the desired field value. However, in the A-phase data were identical also

after field-cooling [4].

The key results of the neutron scattering data may be summarized as follows:

• The helical wave-vector aligns perpendicular to the applied magnetic field.

• The fundamental symmetry of the intensity pattern is sixfold suggesting a

multi-~q structure.

• The A-phase stabilizes in a magnetic field strength of order Bc2/2. The Bragg

spots are located in the plane perpendicular to the magnetic field ~B and form

a regular hexagon independent of the orientation of the underlying lattice.

Moreover, the pattern aligns very weakly with respect to the 〈110〉 orientation.
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3 Theoretical Description: Ginzburg-Landau Theory

In the abscence of a current, the magnetic structures can be analyzed in the frame-

work of a continuum Ginzburg-Landau theory, where the Ginzburg-Landau free

energy is expanded in terms of the slowly varying magnetization. Taking thermal

fluctuations into account, it is also possible to explain the stabilization of the A-

phase [4].

3.1 Ginzburg-Landau Functional for a Usual Ferromagnet

For a usual ferromagnet, we have the following szenario [18]. Below the critical

temperature Tc, the system is spontaneously magnetized. The thermodynamic state

of the system is, in addition to the external magnetic field ~B and the tempera-

ture T , characterized by the magnetization ~M , which is the thermal average of the

microscopic spins.

In the paramagnetic phase, i.e. above the critical temperature Tc the magneti-

zation ~M vanishes. Since ~M is continuous, the phase transition is of second order.

Fig. 7 shows a typical temperature versus magnetic field phase diagram of a ferro-

magnet.

Near the critical temperature Tc the two phases can be explained in the frame-

work of a Ginzburg-Landau theory. In thermal equilibrium, the magnetic state of

any system is the one that minimizes its free energy G. The free energy is given

by the volume integral of the free energy density F , which is constructed as a func-

tion of the order parameter, the local magnetization ~M(~r). The dimensionless free

energy G as a function of the magnetic field and temperature is given by

e−G =
∫
D ~M e−F [ ~M ]. (1)

The free energy functional F is a functional of the magnetization and its derivatives.

Near the phase transition the order parameter is small, such that one may expand

B

T

Ferro. Para.

Ferro. T
c

Figure 7: Magnetic phase diagram of a ferromagnet.
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3.1. Ginzburg-Landau Functional for a Usual Ferromagnet

F in powers of ~M . Moreover, in the low energy limit, we do not expect fast fluc-

tuations of the magnetic moments, therefore we additionally expand F in gradients

of the magnetization. Postulating time-reversal symmetry and invariance under the

rotation of all spins, these requirements lead to

F [ ~M(~r)] =
∫
d~r
(
r0
~M2 + J

(
∇ ~M

)2︸ ︷︷ ︸
:=∂αMβ∂αMβ

+ U
(
~M2
)2 + higher order terms

)
.

Here, r0, J and U are parameters with J, U > 0, and Einstein summation is un-

derstood. In a first step, we will neglect the “higher order terms.” Analyzing the

Ginzburg-Landau free energy functional, we observe that F is additionally invariant

under the following transformations:

• translation: ~r → ~r + ~o with ~o ∈ R3 constant

• rotation of space: ~M(~r)→ ~M(R−1~r) with R ∈ SO(3)

• full rotation: ~M(~r)→ R ~M(R−1~r)

• inversion: ~r → −~r and ~M(~r)→ + ~M(−~r)

Applying an external magnetic field ~B, we get the additional term −
∫
d~r ~B · ~M(~r).

In the framework of a mean field approximation, we obtain

G ≈ minF [ ~M ] =: F [ ~M0].

Therefore, the basic idea of our approach is to minimize F with respect to the spin

structure ~M(~r). Afterwards, one can add fluctuations to the minimum of the free

energy functional to improve the mean field solution. Within this approach, the

integral in Eq. (1) becomes Gaussian and thus feasible. For a given local minimum
~M0(~r), the result is

G ≈ F [ ~M0] +
1
2

ln det
(

δ2F

δ ~Mδ ~M

) ∣∣∣∣
~M0

, (2)

where we have omitted the additive constant (3/2) ln(2π).

So far, we have not taken spin-orbit coupling into account. In MnSi, spin-orbit

coupling is weak, but important for the formation of the magnetic patterns. Thus,

we arrange the terms of the free energy funtional according their order of spin-orbit

coupling and treat spin-orbit coupling as a small pertubation. For example in the

purely ferromagnetic case we may neglect spin-orbit coupling, while for MnSi we

have to expand the free energy functional F to higher order.

12



3. Theoretical Description: Ginzburg-Landau Theory

3.2 Ginzburg-Landau Theory for Solids Without Inversion

Symmetry

For crystals without inversion symmetry like MnSi, there exist additional terms

which are of higher order in spin-orbit coupling. To linear order in spin-orbit coupling

there is the so-called “Dzyaloshinskii-Moriya (DM) term”

FDM =
∫
d~r 2D ~M ·

(
∇× ~M

)
that adds to the quadratic part of the Ginzburg-Landau free energy functional [19,

20]. This term is odd under spatial inversion. Moreover, the spin-orbit coupling

term breaks the rotation symmetry. It remains only invariant under rotations in

coordinate space combined with a rotation of the magnetization. Because of its

relativistic origin, the DM term has a small prefactor, D ∼ v2/c2. This prefactor D

is of the order of the spin-orbit coupling strength.

Hence, the Ginzburg-Landau free energy is to quadratic order in the magnetiza-

tion ~M(~r), given by [9, 10]

F2[ ~M(~r)] =
∫
d~r
(
r0
~M2 + J∂αMβ∂αMβ + 2D ~M ·

(
∇× ~M

))
. (3)

From this functional we may infer the existence of three energy scales: The largest

energy scale is the ferromagnetic exchange energy that favors a uniform spin po-

larization. The second one is the weaker Dzyaloshinskii-Moriya interaction favoring

canted spins. The weakest energy scale is not included in the quadratic free energy

functional. It originates from very weak crystalline field interactions and is described

by higher order spin-orbit interactions. For example, subleading spin-orbit coupling

(crystal anisotropy) locks the magnetic structures to the underlying atomic lattice

and thus determines the location of magnetic Bragg peaks.

With the additional term FDM the ground state changes from a ferromagnetic

to a helical magnetic structure for an arbitrary small D [7, 21] as the following

argument demonstrates . The “large-scale” magnetic structure is determined by the

minimization of F2, see Eq. (3). Because this model is still translational invariant,
~M(~r) is a periodic function in space,

~M(~r) =
M√

2

(
~mei~q·~r + ~m∗e−i~q·~r

)
.

Here, ~m is a complex unit vector, i.e. ~m · ~m∗ = 1. If ~M2 = M2 is constant, then

~m2 must be zero. Therefore, we can rewrite ~m as ~m = (~m1 + i~m2)/
√

2 with two

mutually perpendicular real unit vectors ~m1 and ~m2. Using this ansatz we obtain

~M(~r) = M (~m1 cos(~q · ~r)− ~m2 sin(~q · ~r)) .

13



3.2. Ginzburg-Landau Theory for Solids Without Inversion Symmetry

Substituting this representation into the DM term leads to

2iDM2~q · ~m1 × ~m2.

This expression has a minimun as a function of ~q if the vectors ~q and ~m1 × ~m2 are

collinear, i.e. parallel if D < 0 and antiparallel if D > 0. Thus, the additional DM

term causes a helical magnetic order.

Helical structures are, however, easier to describe in momentum space. Being

real, ~M(~r) =
∑

~q ~m~q e
i~q·~r ∈ R implies that ~m−~q = ~m∗~q . This leads to the following

representation of F2 in momentum space

F2 =
∑
~q

[
(r0 + J~q 2)|m~q|2 + 2D~m∗~q · (i~q × ~m~q)

]
,

or written in a matrix notation

F2 =
∑
~q

ma
−~q Γab~q mb

~q

with

Γabq =


r0 + J~q 2 −2iDqz 2iDqy

2iDqz r0 + J~q 2 −2iDqx
−2iDqy 2iDqx r0 + J~q 2

 .

A circularly polarized spiral mode minimizes the energy if ∇ × ~M points in the

direction of −D ~M . For such modes

F2 =
∑
~q

r(|~q |)|~m~q|2,

where r(q) = r0 + Jq2 − 2q|D| = r0 − JQ2 + J(q − Q)2 and Q = |D|/J . Here, we

chose D > 0 which selects a left-handed spiral.

Thus, the Gaussian theory determines the wavelength λ = 2π/Q = 2πJ/|D| and

the chirality of the low-energy helical modes. As mentioned before, the prefactor D

is actually small. This means that the pitch of the helix is large in comparison with

the crystallographic periods and, in general, it will be incommensurate with them.

However, since the Gaussian part of the free energy functional is rotational invari-

ant, the direction of ~q relative to the crystallographic axes remains indeterminate.

For a fixation of this direction, one has to include anisotropy terms. A more detailed

description of terms that pin the helix is given in Sec. 6.4. Of course, also terms in

higher order spin-orbit coupling are allowed by the crystal symmetry. In particular

we count every derivative as one order of spin-orbit coupling. For example, cubic

symmetry allows a term of the form [7]∫
d~r

1
2
α′

[(
∂Mx

∂x

)2(∂My

∂y

)2(∂Mz

∂z

)2
]
.

which is at least sixth order of spin-orbit coupling. However, we expect these terms

to be small at all considered energy scales, and we may neglect them.

14



3. Theoretical Description: Ginzburg-Landau Theory

3.3 Stabilization of the A-Phase

To describe the A-phase, one first has to prove that the free energy of the A-phase

is lower than that of the competing ground state, the conical phase. In Refs. [4, 14]

this is shown within thermal Gaussian fluctuations on top of a mean field theory.

Here, we will only summarize the main parts of it.

The basic idea is to use analogies of the A-phase to an ordinary crystal. The

crystal formation of a solid out of a liquid state is often driven by cubic interactions

of density waves [22]. In momentum space, they can be written as∑
~q1,~q2,~q3

ρ~q1ρ~q2ρ~q3δ(~q1 + ~q2 + ~q3)

The crystal can only gain energy from this term if the three momentum vectors ~q1,

~q2 and ~q3 lie in the same plane and add up to zero.

For MnSi, one gets a similar scenario for a part of the quartic interaction. The

quartic interaction term
∫
d~r ( ~M2)2 of the free energy functional can be rewritten

in momentum space as∑
~q0,~q1,~q2,~q3

(~m~q0 · ~m~q1)(~m~q2 · ~m~q3)δ(~q0 + ~q1 + ~q2 + ~q3),

where ~m~q is the Fourier tranform of ~M(~r), i.e. ~M(~r) =
∑

~q ~m~q e
i~q·~r. In the presence

of a finite uniform component of the magnetization ~Mf , one obtains terms which

are effectively cubic in the modulated moment amplitudes∑
~q1,~q2,~q3

( ~Mf ·m~q1)(m~q2 ·m~q3)δ(~q1 + ~q2 + ~q3).

The three momentum vectors that add up to zero lie in the same plane. Hence,

it is possible to characterize this plane by a normal vector n̂. The modulus of

the momentum vectors is fixed and can be determined by the interplay of the two

gradient terms in the quadratic Ginzburg-Landau functional. As stated above, the

modulus is given by |~q| = |D|/J . Consequently, the relative angles between the

vectors are 120 ◦ (see Fig. 8). By symmetry, the energy change is proportional to
~Mf · n̂, and therefore n̂ aligns parallel to the magnetic field ~B indicating that all the

three momentum vectors are perpendicular to ~B.

These qualitative arguments explain the main experimental observations in the

A-phase: For all orientations of the magnetic field with respect to the atomic lattice,

six Bragg reflections are observed on a regular hexagon that is strictly perpendicular

to the magnetic field. Therefore, it is a good ansatz to describe the magnetization

in the A-phase by a superposition of three helices and a uniform magnetization.

To minimize F [ ~M ] properly, one has to add higher-order Fourier components to

15



3.3. Stabilization of the A-Phase

q

q
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Figure 8: Three momentum vectors ~q1, ~q2 and ~q3 of the A-phase.

the magnetization, but these terms are small in the appropriate part of the phase

diagram.

Accordingly, the A-phase is well described by

~M(~r) ≈ ~Mf +
3∑
j=1

~Mh
~q j (~r + ∆~r j),

where ~Mh
~q j

(~r) = A(n̂j1 cos(~q j~r) + n̂j2 sin(~q j~r)) is the magnetization of a single chiral

helix with amplitude A. The wave vector ~q j and the two unit vectors n̂j1 and n̂j2 are

chosen such that the set {~q j , n̂1
j , n̂j2} forms an orthonormal basis. All three helices

have the same chiraliy, i.e. ~qj · (n̂1
j × n̂j2) has the same sign for all j. Finally, ∆~rj is

the relative shift of the helices. The right combination of these three phases, which

emerge by minimizing the free energy functional, lead to a lattice of anti-Skyrmions.

However, whether the spin structure in the A-phase indeed represents a lattice of

anti-Skyrmions, i.e. a crystalization of topologically stable knots of the spin structure

[23], cannot be extracted from the neutron scattering data. Nevertheless, this phase

relationship of the helices and, thus, the existence of a topologically nontrivial spin

structure can be verified directly via the so-called topological Hall effect that is

discussed in Sec. 8.
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4 The Interplay of Magnetic Structures and Currents

So far we have examined different magnetic structures that occur in the phase dia-

gramm of MnSi. Below we consider the influence of a current on these structures.

To motivate the application of a current, we will comment on some basic ideas of

spintronics: Electrons have a charge and a spin. In classical electronic applications,

the charge degree of freedom is controlled by electric fields, but the spin degree of

freedom is ignored. In other applications, i.e. magnetic recording, one benefits from

the spin degree of freedom, but only because of its macroscopic accumulation, the

total magnetization.

In general, spintronics describes spin transport electronics and is also known as

magnetoelectronics. It is an emerging technology that exploits, in addition to the

charge of an electron, its spin and its associated magnetic moment, in solid-state

devices.

In 1988, the discovery of the giant magnetoresistance (GMR) effect paved the

way to an efficient control of charge transport through the magnetization by acting

on the spins of the electrons. This naturally leads to the idea to invert this effect, i.e.

to control the magnetization by a current. Spin-transfer [24, 25, 26], i.e. the transfer

of angular momentum produced by a flow of electrons through an inhomogeneous

magnetization configuration, allows to manipulate the magnetization of a material

using a current. This effect was theoretically proposed by Slonczewski and Berger

[25, 26]. It has attracted a lot of attention due to its potential use in applications,

where a magnetic state is altered by a current in contrast to conventional techniques

involving magnetic fields.

The electrical control of the spin degree of freedom is a central part of spintronics,

where one wants to use the electron spin for information processing and data storage.

One of the long-term objective of spintronics is to combine semiconductor technology

with magnetic materials to efficiently improve microelectronic devices.

Concerning MnSi, the work presented in the following is motivated by the the

neutron scattering data obtained in the group of Pfleiderer, in particular for the

A-phase. For the helical and the conical phase Pfleiderer et al. have, using neutron

scattering experiments, not observed spin-torque effects under the influence of a

current. However, in the A-phase the positions of the peaks change under the

influence of a current. A more detailed description of this “position change” is given

in Sec. 7.

One of the major challenges in the theoretical description of various spintronics

phenomena, such as altering a magnetic state by a spin-polarized current, is their in-

herent nonequilibrium character. Therefore, to investigate the influence of a current

on a magnetic structure, it is not possible to only minimize an energy functional.
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4. The Interplay of Magnetic Structures and Currents

Although one may use the Keldysh formalism for this situation, a probably simpler

approach is to consider the equation of motion for the magnetization direction Ω̂(~x, t)

in the presence of a charge current ~j. This equation is called Landau-Lifshitz-Gilbert

equation [27], and will be introduced in the next section.
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5 The Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz-Gilbert (LLG) equation is the equation of motion for the slow

(up to first order in time derivative) and smooth (up to first order in space deriva-

tives) varying magnetization direction Ω̂(~x, t) = ~M(~x, t)/| ~M | with a constant am-

plitude ~M . In the presence of a current ~j, it is given by [27, 28, 29]:(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t) = −Ω̂(~x, t)× ~Beff−αGΩ̂(~x, t)×

(
d

dt
+

β

αG
~vs · ∇

)
Ω̂(~x, t).

(4)

This equation is often derived phenomenologically, but it contains four parameters

which can be determined only in terms of a microscopic theory:

• The effective magnetic field ~Beff := − δF
δ ~M
≈ − 1

| ~M |
δF
δΩ̂

= − 1
| ~M |

δF
δ ~M

∂ ~M
∂Ω̂

including

the external magnetic field and additional contributions due to magnetostatic

interactions and magnetocrystalline anisotropy;

• the dimensionless Gilbert damping parameter αG;

• the dimensionless damping parameter β;

• the velocity ~vs which is proportional to the spin-polarized current ~vs ≈ −a3P~j
|e|

[30], where ~j is the charge current, P the spin polarization and e the electron

charge. a is the lattice constant, i.e. a−3 is a measure of the magnetization

density.

The term proportional to ~vs on the l.h.s. is called the “reactive spin-transfer torque”.

The term proportional to β ~vs on the r.h.s. is denoted as the “dissipative spin-

transfer torque”. The Landau-Lifshitz-Gilbert equation is valid if the direction of

the magnetization changes slowly. Since the helical ground state of MnSi has a long

wavelength, we are allowed to apply this equation for the magnetic phases of MnSi.

5.1 Motivation of the Landau-Lifshitz-Gilbert Equation

Let us consider a single, normalized magnetic moment ~m (|~m| = 1) in a magnetic

field ~H without damping. For this scenario, the equation of motion is given by

d~m

dt
=
(
~m× ~B

)
= ~T

with the torque ~T . The Larmor frequency is given by ω = −B. Without damping,

the magnetic moment only precesses around the magnetic field vector ~B and does

not align parallel to ~B (see Fig. 9, left). Since the situation with ~m ‖ ~B has the

lowest energy, one needs a damping torque ~TD which represents the rate at which
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5.1. Motivation of the Landau-Lifshitz-Gilbert Equation
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m

Figure 9: Sketch of a single magnetic moment in a magnetic field B. Left: Without

damping, Right: With damping.

the magnetization relaxes to equilibrium (see Fig. 9, right). This damping torque

TD should be orthogonal to ~m because |~m| = constant, i.e. ~m remains on the unit

sphere. Moreover, it shall be orthogonal to d~m
dt . Since ~m ⊥ d~m

dt , ~TD is well-defined

by a constant times the cross product between these two vectors:

~TD = −αG
(
~m× d~m

dt

)
.

Thus,
d~m

dt
=
(
~m× ~B

)
− αG

(
~m× d~m

dt

)
.

Here, αG > 0 is the the Gilbert damping parameter which is a measure for the

magnetization relaxation.

To motivate the term on the l.h.s. of Eq. (4) including ~vs, the so-called “reactive

spin transfer torque term”, we consider the following intuitive picture [28]: The spin

of the electrons constituting the current rotates when it passes through the smoothly

varying magnetic structure because it aligns with the local magnetization. Due to

spin conservation, there is an opposite torque on the local magnetization which leads

to a net displacement of the magnetic structure in the same direction as the electric

current [31]. This “drift” can be described by substituting ∂
∂t by ∂

∂t +~vs · ∇ [32]: As

the electrons traverse a solid, where the magnetization direction changes from Ω̂(~r, t)

to Ω̂(~r+d~r, t), the conduction electrons experience a torque from the magnetization.

Conversely, there is the reaction spin transfer-torque (sometimes referred to as the

“adiabatic spin transfer torque”) on the magnetization given by [25, 26, 33, 34]

∂Ω̂(~r, t)
∂t

∣∣∣
current

∝ ~vs ·
(

Ω̂(~r + d~r, t)− Ω̂(~r, t)
)
∝ (~vs · ∇)Ω̂(~r, t).

Later, to explain some discrepancies with experiments, a so-called “dissipative spin

transfer torque” (sometimes referred to as the “non-adiabatic spin transfer torque”)

−βΩ̂(~x, t)×
(

(~vs · ∇) Ω̂(~x, t)
)
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5. The Landau-Lifshitz-Gilbert Equation

was added to the Landau-Lifshitz-Gilbert equation [29, 35, 36, 37]. Physically,

it is based on electron-spin relaxation and spin-flip scattering events [32]. The

corresponding coefficient β characterizes the degree to which spin is not conserved

in the spin-transfer process.

Regarding the values of αG, β and their ratio β/αG, it is generally accepted

that β is of the same order as αG. In general, however, they are not equal as

indicated by recent experiments and microscopic theories [38]. Furthermore, neither

β nor αG need to be constant. They depend on the properties of the material and

are most likely also temperature dependent. Their typical magnitude range from

10−3 to 10−1 [39]. Microscopic derivations of Eq. (4) can be found, for example, in

Refs. [27, 38, 40]. The approach used in Ref. [27] is based on a functional formulation

of the Keldysh formalism. In another approach [38], the authors use imaginary-time

methods to calculate αG and β.

Spintronics in nanostructures is another field, where spin-transfer torques and

the Landau-Lifshitz-Gilbert equation appear [40]. Here, one considers, for example,

spin-torque driven domain wall dynamics. The current densities that are required

for this are typically of the order of 1012 A/m2 [41]. Compared to the current

densities used in the experiments for MnSi, |~j| ≈ 106 A/m2, these differ by a factor

of 106. Typical experiments to detect these current-driven domain wall dynamics

are performed by means of scanning electron microscopy (SEM) [42].

5.2 A Simple Example

To get a better understanding of Eq. (4), let us examine a simple case without

damping αG = β = 0 and F2 instead of the full free energy functional F . In this

case, the LLG eq. (4) reduces to(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t) = Ω̂(~x, t)×

(
− δF2[ ~M ]

δ ~M(~x, t)

)
. (5)

In Sec. 3.2, we have seen that F2 is minimized by a helical structure of the form

~M0(~x) = | ~M | · Ω̂0(~x) = | ~M | [cos(q̂ · ~x)n̂1 + sin(q̂ · ~x)n̂2] ,

where the set {q̂, n̂1, n̂2} forms an orthonormal basis. This implies that

δF2[ ~M ]

δ ~M(~x, t)

∣∣∣
~M(~x,t)= ~M0(~x,t)

= 0.

Using this relation, it is easy to guess a solution of Eq. (5) since the right hand side

vanishes. The remaining linear transport equation with transport velocity ~vs is, for

example, solved by:

Ω̂(~r, t) = Ω̂0(~r − ~vst) = cos(q̂ · (~r − ~vst))n̂1 + sin(q̂ · (~r − ~vst))n̂2. (6)
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5.3. Equations of Motion for Dynamical Variables

It is, of course, possible to add a constant phase ϕ0. From the above equation it is

clear that the magnetization of the helix rotates with constant frequency

ω = q̂ · ~vs

around the helical spin-density wave vector q̂ which corresponds to a translation

or drift in the direction of q̂. Another interpretation of this scenario, proposed by

R. A. Duine, is to view the helical spin-density wave as a series of domain walls driven

by the adiabatic spin-transfer torque. The corresponding domain wall velocity due

to the spin current is then given by

Vdw =
2π/|q̂|
2πω

=
1
|~vs|

.

From this one can infer that a drift solution is inherent to Eq. (5) and therefore

also to Eq. (4). Especially for the case β
αG

= 1 this is easy to see. In this case,

Eq. (6) is still a solution since the additional damping terms add up to zero. In the

general case β 6= αG, we still expect a solution that drifts. Only the direction and

the modulus of the drift, which were given by ~vs for the special cases, should be

modified. Thus, in an ansatz for the magnetization, one should include such a drift

vector.

To solve Eq. (4) analytically is certainly too difficult. Therefore, we perform

a different method which is motivated by a variation principle. In Sec. 9, we will

see that the Landau-Lifshitz-Gilbert equation can, in principle, be derived from a

variation principle which one may use to derive the equations of motion. However,

the following strategy is more direct and does not contain problems such as surface

terms.

5.3 Equations of Motion for Dynamical Variables

The main idea is to parameterize the direction of the magnetization by a few time-

dependent variables uj (j = 1, . . . , n), i.e. Ω̂(~r, t) = Ω̂(~r, u1(t), . . . , un(t)). Starting

from the LLG equation, we want to derive effective equations of motion for these

variables. Multiplying Eq. (4) by
(

Ω̂× ∂Ω̂
∂uj

)
, one has to calculate expressions like

(Ω̂ × ~Y ) · (Ω̂ × ∂Ω̂
∂uj

). These can be simplified by realizing that Ω̂ is normalized, i.e.

|Ω̂| = 1, thus Ω̂ · ∂Ω̂
∂uj

= 0. This leads to

(Ω̂× ~Y ) ·
(

Ω̂× ∂Ω̂
∂uj

)
= εklm Ω̂lYmεknp Ω̂n

(
∂Ω̂
∂uj

)
p

= (δlnδmp − δlpδmn) Ω̂lYmΩ̂n

(
∂Ω̂
∂uj

)
p

.
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5. The Landau-Lifshitz-Gilbert Equation

We get

(Ω̂× ~Y ) ·
(

Ω̂× ∂Ω̂
∂uj

)
= Yk

(
∂Ω̂
∂uj

)
k

= ~Y · ∂Ω̂
∂uj

. (7)

Using this equation and integrating over the volume V one obtains n linear coupled

differential equations of first order in time:

−
∫
V
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂− 1

| ~M |
∂F

∂uj

=
∫
V
d~r · αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂Ω̂

∂uj
. (8)
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6 The Helical Phase

Since the modulus of the momentum vector is fixed to the value Q = |D|/J for

the helix, we may perform our calculations in units of Q, i.e. we perform the cal-

culation with a normalized momentum vector ~q and rescale the result at the end

appropriately.

Figure 10: Picture of a helix. Figure taken from Ref. [43].

6.1 The Ansatz for the Helical Phase

A helical magnetic structure with constant amplitude | ~M | =: M is described by the

ansatz [39]:

~M(~r, t) = M Ω̂(~r, t) = M Ω̂ (q̂(t), ~r − ~ϕ(t),m(t))

=
M√

1 +m2

(
cos(~q · (~r − ~ϕ))n̂1 + sin(~q · (~r − ~ϕ))n̂2 +mq̂

)
,

(9)

where ~q = q · q̂. Here q = D/J as in Sec. 3.2, q̂ is the direction vector of the helix,

and n̂1 and n̂2 are choosen such that {q̂, n̂1, n̂2} forms an orthonormal basis. ~ϕ is the

translation vector, and m is a measure for the uniform magnetization in the direction

of the helix. For m = 0 we have a helix, while for m 6= 0 we get a conical magnetic

structure. Nevertheless, in the following we will denote this magnetic structure as a

helix as well.

The purpose of this section is to calculate both sides of Eq. (8) for each of the

dynamical variables ~q, ~ϕ and m. To achieve this, we also need the free energy

functional for the helix in terms of the dynamical variables.

6.2 Free Energy Functional

As a first approximation, we consider the free energy functional only in quadratic

order in the magnetization ~M :

F2[ ~M ] =
∫
V
d~r

[
r0 | ~M |2 + J

(
∇ ~M(~x, t)

)2
+ 2D ~M(~x, t) ·

(
∇× ~M(~x, t)

)]
.
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6.2. Free Energy Functional

For the helix described by the ansatz (9) we can calculate all terms. The first one

is only a constant contribution | ~M |2 = M2. The second one is given by (∇ ~M)2 =

M2(∇Ω̂)2 with

(∇Ω̂)2 =
(
d

dx
Ω̂
)2

+
(
d

dy
Ω̂
)2

+
(
d

dz
Ω̂
)2

.

Using the relation

d

dx
Ω̂ =

qx√
1 +m2

(− sin(~q · (~r − ~ϕ))n̂1 + cos(~q · (~r − ~ϕ))n̂2)

we get (
d

dx
Ω̂
)2

=
q2
x

1 +m2

and thus

(∇Ω̂)2 =
q2
x + q2

y + q2
z

1 +m2
=

q2

1 +m2

Similarly, starting from the relation

~M · (∇× ~M) = M2 Ω̂ · (∇× Ω̂) = M2 Ω̂j · (∇× Ω̂)j

we may calculate(
∇× Ω̂

)
x

= dyΩ̂z − dzΩ̂y

=
1√

1 +m2

(
qy
(
− sin(~q · (~r − ~ϕ))n1z + cos(~q · (~r − ~ϕ))n2z

)
− qz

(
− sin(~q · (~r − ~ϕ))n1y + cos(~q · (~r − ~ϕ))n2y

))
=

1√
1 +m2

(
− sin(~q · (~r − ~ϕ))

(
qyn1z − qzn1y

)
+ cos(~q · (~r − ~ϕ))

(
qyn2z − qzn2y

))
= − q√

1 +m2

(
sin(~q · (~r − ~ϕ))n2x + cos(~q · (~r − ~ϕ))n1x

)
and thus we obtain

Ω̂ · (∇× Ω̂) = − q

1 +m2
.

For the quadratic free energy we get with q = D/J

F2[ ~M ] =
∫
V
d~rM2

(
r0 +

Jq2

1 +m2
− 2Dq

1 +m2

)
=
∫
V
d~rM2

(
r0 −

D2

J

1
1 +m2

)
.

Up to quadratic order, the free energy functional depends only on the uniform

magnetic moment m. Therefore, F2 contributes only to the equation of motion for

m with
∂F2

∂m
=
∫
V
d~r M2D

2

J

2m
(1 +m2)2

.
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6. The Helical Phase

For simplicity let us choose units such that |~q| = q = 1, i.e. J = D. Then we have

Ω̂(~r, t) = Ω̂ (q̂(t), ~r − ~ϕ(t),m(t))

=
1√

1 +m2

(
cos(q̂ · (~r − ~ϕ))n̂1 + sin(q̂ · (~r − ~ϕ))n̂2 +mq̂

)
,

and

F2[ ~M ] =
∫
V
d~rM2

(
r0 − J

1
1 +m2

)
.

respectively
∂F2

∂m
=
∫
V
d~r M2J

2m
(1 +m2)2

.

6.3 The Equations of Motion

To calculate the equations of motion for all variables, we have to specify the direction

vector q̂. Being normalized, q̂ depends on only two variables. Natural descriptions

of q̂ include:

1. Cartesian coordinates, qx, qy, i.e.

q̂ =
(
qx, qy,

√
1− q2

x − q2
y

)T
. (10)

2. Spherical coordinates in terms of two polar angles, θ, φ, i.e.

q̂ = (cosφ sin θ, sinφ sin θ, cos θ)T .

3. A coordinate invariant manner by defining q̂ by the directions of n̂1 and n̂2.

In the following, we will use the first method to describe q̂ in terms of qx and qy.

Method 2 is infeasible as a lot of lenghty expressions will be generated. Finally,

method 3 is, from a theoretical point of view, the best one, but so far we have

not yet managed to write every term in a coordinate invariant form. Thus, in the

following calculations q̂ is given by Eq. (10). An orthonormal basis consists of the

vectors n̂1, n̂2 and q̂. Here, we define n̂1 and n̂2 by:

n̂1(qx, qy) =
1√

1− qy

(√
1− q2

x − q2
y , 0,−qx

)T
,

n̂2(qx, qy) =
1√

1− qy

(
−qxqy, 1− q2

y ,−qy
√

1− q2
x − q2

y

)T
.

Note that ~ϕ is a vector, but only the component in the direction of ~q occurs in Eq. (9)

for the helix. Therefore, the equations of motion for ϕx, ϕy and ϕz are effectively a

single equation. This parametrization for the helix leads to four different equations

of motion for the time-dependent variables qx(t), qy(t), ~ϕ(t) and m(t). A derivation

of these equations is given in App. A.
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6.3. The Equations of Motion

In the “static” case, where the q vector and the uniform magnetic component m

are constant in time, i.e. q̇x = q̇y = ṁ = 0, the equations of motion reduce to:∫
V
d~r

(
1

1 +m2

)3/2

·
(
− m√

1 +m2
· 2 J M + q̂ · (~vs − ~̇ϕ)

)
= 0, (11a)

and

0 = −
∫
V
d~r

αG
1 +m2

q̂ ·
[
q̂ ·
(
β

αG
~vs − ~̇ϕ

)]
, (11b)

0 =
∫
V
d~r

αG
1 +m2

[(
~̇ϕ− β

αG
~vs

)
· q̂
]
·
(
ϕx −

qx · ϕz√
1− q2

x − q2
y

)
, (11c)

0 =
∫
V
d~r

αG
1 +m2

{[(
~̇ϕ− β

αG
~vs

)
· q̂
]

·
(
ϕy −

qy · ϕz√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− qy)

)}
. (11d)

For an arbitrary volume V , Eq. (11b) is solved by

q̂ ·
(
β

αG
~vs − ~̇ϕ

)
= 0 ⇒ ~̇ϕ · q̂ =

β

αG
~vs · q̂.

As a result, the q-component of ~̇ϕ and β
αG
~vs should be equal in the basis {q̂, n̂1, n̂2}.

Likewise, equations (11c) and (11d) are fulfilled. Substituting ~̇ϕ · q̂ into Eq. (11a)

we get for an arbitray volume V :

− m√
1 +m2

· 2 J M + q̂ · ~vs
(

1− β

αG

)
= 0.

This equation can be solved for the uniform magnetic component in the direction of

the q-vector by
m√

1 +m2
=

1− β/αG
2 J M

(~vs · q̂).

Since only q-components occur in the solution, let us denote ~̇ϕ · q̂ by ϕ̇ and ~vs · q̂ by

vs. To conclude, the solution of the equations of motion for q̂, ϕ and m in the static

limit ( ˙̂q = 0, ṁ = 0) is given by

ϕ(t) = β/αG vs · t,
m√

1 +m2
=

1− β/αG
2 J M

vs.

Note that Goto et al. [39] obtain similar results from Eq. (4) for q̂ = ~ex by solving

the Landau-Lifshitz-Gilbert equation in one dimension.

This result implies that the spin current leads to a shift of the spiral pattern

with a time-independent drift velocity ϕ̇ = β/αG vs in the direction of the helix.

Moreover, it leads to the formation of a uniform magnetization m/(1 + m2)1/2 in

the direction of q̂. The sign of m is determined by αG and β.
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6. The Helical Phase

Furthermore, we find, that the spin current does not influence the direction of

of the helix vector ~q. This is consistent with the experimental data obtained from

neutron scattering experiments, where no spin-torque effects in the helical and the

conical phase are observed. However, Goto et al. [39] also performed numerical

simulations on a two-dimensional square lattice. Starting from a random spin con-

figuration, they have modeled the relaxation of the spins into the spiral state, first

in the absence of a current. In this case, they observe, as expected, no ordering of

the direction of the spiral wave vector. In the current applied case, they describe

an annealing of the directional disorder of the spiral magnet. However since they

analized a different problem (relaxation of spins into the spiral state instead of re-

orientating a helix), we can not directly compare both data. Nevertheless, in the

special case of ~j ‖ q̂ all approaches coincide.

In this calculation, we considered the free energy functional only up to quadratic

order, where F2 is fully rotational invariant. In a real material, this rotation symme-

try is spontaneously broken and the remaining global rotation symmetry of the entire

spin structure is eliminated by weak crystaline anisotropies that pin the magnetic

structure to the underlying atomic lattice. Therefore, the next step is to examine

the effect of an anisotropy energy on the spiral by introducing higher order terms in

the free energy fuctional.

6.4 The Helical Phase With a Pinning Term

Since the crystal anisotropy energy is small, we will consider it as a pertubation

of the ground state that only influences the orientation of the helix. Higher order

terms should, of course, respect the B20 crystal structure. In Ref. [44], the authors

showed on symmetry grounds that the extrema of a crystal anisotropy function (as

a function of the spiral direction) are in the 〈111〉 and 〈100〉 directions.

The simplest, lowest order term that produces such a pinning is of the form

F (1)
p [ ~M(~r)] = c1

∫
V
d~r ~M(~r)

(
d4
x + d4

y + d4
z

)
~M(~r)

For a fixed amplitude of ~M and ~q we can simplify F (1)
p [ ~M(~r)]

F (1)
p [ ~M(~r)] = c1M

2

∫
V
d~r Ω̂(~r)

(
d4
x + d4

y + d4
z

)
Ω̂(~r)

= c1M
2q4
∑
~q

(
q4
x + q4

y + (1− q2
x − q2

y)
2
)
|~m~q|2

=: c̃1

∑
~q

f(q)|~m~q|2,

where c̃1 = c1M
2q4 and f(q) = q4

x+q4
y+(1−q2

x−q2
y)

2. Here q2
x+q2

y is restricted to be

smaller or equal to one. Internal extrema of f(q) are determined by the conditions
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∂f
∂qx

= ∂f
∂qy

= 0. Depending on the sign of the prefactor, F (1)
p has minima at 〈111〉 or

〈100〉. For example, for c̃1 > 0 we get minima at 〈111〉.
Since MnSi pins into the 〈111〉 direction, we assume c̃1 > 0, i.e. q2

x = q2
y = 1/3.

For a helix given by Eq. (9) we get

F (1)
p [Ω̂] = c̃1

∫
V
d~r
q4
x + q4

y + (1− q2
x − q2

y)
2

1 +m2
.

With this extra term in the free energy functional,

F [Ω̂] = F2[Ω̂] + F (1)
p [Ω̂],

we get the following additional terms in the equations of motion:

∂F
(1)
p

∂m
= −c̃1

∫
V
d~r

2m
1 +m2

·
(
q4
x + q4

y + (1− q2
x − q2

y)
2
)
,

∂F
(1)
p

∂~ϕ
= 0,

∂F
(1)
p

∂qx
= −c̃1

∫
V
d~r

4qx · (1− q2
x − q2

y − q2
x)

(1 +m2)2
,

∂F
(1)
p

∂qy
= −c̃1

∫
V
d~r

4qy · (1− q2
x − q2

y − q2
y)

(1 +m2)2
.

In the static case with pinning term F
(1)
p we obtain the following equations of motion:∫

V
d~r

(
1

1 +m2

)3/2[
− 2m√

1 +m2

D

q
M+c1q

4M(q4
x+q4

y+(1−q2
x−q2

y)
2)
)
+q̂·(~vs− ~̇ϕ)

]
= 0

(12a)

and

0 = −
∫
V
d~r

αG
1 +m2

q̂ ·
[
q̂ ·
(
β

αG
~vs − ~̇ϕ

)]
, (12b)

0 =
∫
V
d~r

{
αG

1 +m2

[(
~̇ϕ− β

αG
~vs

)
· q̂
]
·
(
ϕx −

qx · ϕz√
1− q2

x − q2
y

)

− c̃1

M

4qx · (1− q2
x − q2

y − q2
x)

(1 +m2)2

}
, (12c)

0 =
∫
V
d~r

{
αG

1 +m2

[(
~̇ϕ− β

αG
~vs

)
· q̂
]
·
(
ϕy −

qy · ϕz√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− qy)

)]
− c̃1

M

4qx · (1− q2
x − q2

y − q2
x)

(1 +m2)2

}
. (12d)

Eq. (12b) remains unchanged compared to Eq. (11b). For an arbitrary volume V it

is solved by

q̂ ·
(
β

αG
~vs − ~̇ϕ

)
= 0 ⇒ ~̇ϕ · q̂ =

β

αG
~vs · q̂,
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6. The Helical Phase

again implying that in the basis {q̂, n̂1, n̂2} the q-component of ~̇ϕ and β
αG
~vs have to

be equal. Likewise, in Eqs. (12c) and (12d), the first term vanishes. Therefore, a

solution of the equations of motion has to fulfill

δF
(1)
p

δqx
=
δF

(1)
p

δqy
= 0.

However, this condition is already met by requiring a minimization of the pinning

term ∂f
∂qx

= ∂f
∂qx

= 0. In particular, for MnSi we have

q2
x = q2

y = 1/3 ⇒ 1− q2
x − q2

y − q2
x = 1− q2

x − q2
y − q2

y = 0.

The additional term in Eq. (12a), using q2
x = q2

y = 1/3 for MnSi, is given by

−c1q
4M

∫
V d~r

1
3 ·

2m
1+m2 . Thus, it only adds a constant to D/q. Using the results

obtained above, we get for an arbitrary volume V the relation

m√
1 +m2

=
1− β/αG

2M(D/q + 1/3 c1q4)
(~vs · q̂).

Since only q-components occur in the solution, we choose the same notation as

before.

To sum up, the solution of the equations of motion including the pinning term

F
(1)
p for q̂, ϕ and m in the static limit ( ˙̂q = 0, ṁ = 0) is given by

ϕ(t) = β/αG vs · t,
m√

1 +m2
=

1− β/αG
2M(D/q + 1/3 c1q4)

vs.

Hence, this pinning term does not reorientate the helix, and the direction of the drift

is unchanged. For example, other rotationally non-invariant terms of fourth order

spin-orbit coupling that are allowed by the crystal symmetry are [21, 45]

F (2)
p = c̃2

∫
V
d~r
[
(∂x ~Mx)2 + (∂y ~My)2 + (∂z ~Mz)2

]
,

F (3)
p = c̃3

∫
V
d~r
(
~M4
x + ~M4

y + ~M4
z

)
.

Of course, one can also examine higher order terms in spin-orbit coupling, but

these will have an even more smaller prefactor such that the effect of these terms is

insignificant. In this analysis, we have neglected the amplitude degree of freedom of

the helix since we expected it to remain constant. Moreover, we have not included

the influence of an external magnetic field, noise terms and disorder.
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7 A-Phase

While the application of a current does not alter the direction of the q-vector in

the helical phase, the situation is different for the A-phase. In the experiments one

clearly observes a change of the A-phase under a current as can be seen in Fig. 11.

This picture is produced in the following way. One has to perform two measurements

in the temperature and magnetic field range of the A-phase. For example, the first

one is done with a current into the x̂ direction. The second measurement should

then be performed with an applied current in the opposite direction, here the −x̂
direction. In the final step, one subtracts the data of the measurements, which leads

to the shown data. Obviously, the position change of the q-vectors is an odd effect

in the current. One possible interpretation of the experimental data is that under

the influence of a current the q-vectors of the A-phase rotate around the axis of

the magnetic field which determines the plane of the q-vectors. The purpose of this

Section is to develop a theoretical understanding of the experimental data and, in

particular, to explain the spin-torque effects in the A-phase.

As shown in Sec. 3.3, it is a good approximation to describe the magnetization

in the A-phase by a superposition of three helices and a uniform magnetization.

Hence, the ansatz for the A-phase is much more complex than for a single helix.

Certainly, the full dynamical equations of motions will be too complicated to allow

for a closed solution. Therefore, we restrict ourselves from the beginnig to the

“static” limit, defined analog to the helical case. Moreover, not everything can be

computed analytically for the A-phase.

However, as argued in Sec. 5.2 the magnetic structure will drift under the influ-

ence of a current. In the following, we will derive analytically this drift velocity in

the static limit.

Figure 11: Experimental data for plus and minus current subtracted.
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7.1 Analytical Determination of the Drift Velocity in the Static

Limit

By claiming that the magnetization direction Ω̂ only depends on the drift vector ~ϕ

in the combined the structure (~r − ~ϕ), i.e.

Ω̂(~r, t) = Ω̂(~r − ~ϕ(t), u1(t), . . . , um(t)),

where uj(t) are the other dynamical variables, the structure (~r − ~ϕ) leads to∫
V
d~r

(
Ω̂× ∂Ω̂

∂ϕj

)
·
(
d

dt
Ω̂ + (~vs · ∇)Ω̂

)
=
∫
V
d~r 4π

(
~Φ× (~vs − ~̇ϕ)

)
j
. (13)

Here, the Skyrmion density ~Φ is given by [46]

Φj =
1

8π
εjkl Ω̂ ·

(
∂Ω̂
∂xk
× ∂Ω̂
∂xl

)
. (14)

Note that a derivation of Eq. (13) is given below. Let us consider without loss of

generality the case, where the magnetic field is parallel to the z-direction ~B = B · ẑ
and where the plane of the three q-vectors is the xy-plane. For this ansatz we get

~̇ϕ =
β

αG
~vs +

(
1− β

αG

)
Y 2

α2
GX

2 + Y 2
~vs −

(
1− β

αG

)
αGX

α2
GX

2 + Y 2
· Y (ẑ × ~vs), (15)

where X ≡
∫
V d~r

1
2 (∇Ω̂)2 and Y ≡

∫
V d~r 4πΦz. A derivation of this formula is also

given below.

Thus, ~̇ϕ is a time-independent vector that lies in the xy-plane. Without a

Skyrmion density, Φ = 0, we reproduce the result for the helix as ~̇ϕ = (β/αG)~vs. In

the Galilei invariant case, β/αG = 1, we obtain ~̇ϕ = ~vs as expected. More explicitely,

in the limit β
αG
≈ 1 + ε and ε, αG � 1, i.e. small damping, we get

~̇ϕ = (1 + ε)~vs − ε
Y 2

α2
GX

2 + Y 2
~vs + ε

αGX

α2
GX

2 + Y 2
· Y (ẑ × ~vs)

αG→0−−−−→ ~vs.

For the A-phase we may simplify Eq. (15) by integrating over a magnetic unit cell

with volume V0 and using Y = 4π
∫
V0
d~rΦz = −4π. This leads to

~̇ϕ =
β

αG
~vs +

(
1− β

αG

)
1

α2
GX

2 + 1
~vs +

(
1− β

αG

)
αGX

α2
GX

2 + 1
ẑ × ~vs

Note that in Subsection 7.3, we will give a different, but equivalent derivation for ~̇ϕ.

Derivation of Eqs. (13) and (15)

Since the magnetic structure in the A-phase is translational invariant in the direction

of the magnetic field, we get ∂Ω̂
∂z = − ∂Ω̂

∂ϕz
= 0 for ~B ‖ ẑ. Thus, Φx = Φy = 0 and

Φz =
1

8π
Ω̂ ·
(
∂Ω̂
∂x
× ∂Ω̂
∂y

)
− 1

8π
Ω̂ ·
(
∂Ω̂
∂y
× ∂Ω̂
∂x

)
=

1
4π

Ω̂ ·
(
∂Ω̂
∂x
× ∂Ω̂
∂y

)
.
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Moreover, in the “static limit”, where u̇j = 0 for all variables except ~ϕ, we get

d

dt
Ω̂ =

∂Ω̂
∂ϕj
· ϕ̇j = − ∂Ω̂

∂rj
· ϕ̇j = −( ~̇ϕ · ∇) Ω̂

This implies (
d

dt
+ (~vs · ∇)

)
Ω̂ =

(
(~vs − ~̇ϕ) · ∇

)
Ω̂ =: (~w · ∇) Ω̂

with the modified velocity ~w = ~vs − ~̇ϕ. Therefore, for j = x we obtain:∫
V
d~r

(
Ω̂× ∂Ω̂

∂ϕx

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂ = −

∫
V
d~r

(
Ω̂× ∂Ω̂

∂x

)
· (~w · ∇) Ω̂

=
∫
V
d~r Ω̂ ·

(
(~w · ∇)Ω̂× ∂Ω̂

∂x

)
=
∫
V
d~r wy Ω̂ ·

(
∂Ω̂
∂y
× ∂Ω̂
∂x

)
=
∫
V
d~r (−4π)wy ·

1
4π

Ω̂ ·
(
∂Ω̂
∂x
× ∂Ω̂
∂y

)
=
∫
V
d~r 4π (−wy · Φz + wz · Φy)

=
∫
V
d~r 4π

(
~Φ× ~w

)
x

=
∫
V
d~r 4π

(
~Φ× (~vs − ~̇ϕ)

)
x
,

where the penultimate line follows from Φy = 0. The analog result is obtained for

j = y.

To derive Eq. (15) one has to calculate both sides of Eq. (8) in the case of uj = ϕj .

Assuming that the free energy functional does not depend on ~ϕ, i.e. ∂F
∂ϕj

= 0, one

has already calculated the l.h.s. of Eq. (8) by using Eq. (13). To calculate the r.h.s.

of Eq. (8), we use the following relations that are valid in the static limit:

∂dtΩ̂
∂ϕ̇j

=
∂Ω̂
∂ϕj

and
(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ =

[(
β

αG
~vs − ~̇ϕ

)
· ∇
]
Ω̂ =: (~wαGβ · ∇) Ω̂

with the modified velocity ~wαGβ = β
αG

~vs − ~̇ϕ. Thus we get

∫
V
d~r αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂dtΩ̂

∂ϕ̇j

=
∫
V
d~r αG

(
(~wαGβ · ∇) Ω̂

)
· ∂Ω̂
∂ϕj

= −
∫
V
d~r · αG (~wαGβ)k

∂Ω̂
∂rk
· ∂Ω̂
∂rj

=: −αGDjk · (~wαGβ)k = −αGDjk ·
(
β

αG
~vs − ~̇ϕ

)
k

with the entries of the matrix D given by

Djk =
∫
V
d~r

∂Ω̂
∂rj
· ∂Ω̂
∂rk

.
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Because of the translational invariance in the z direction, derivatives with respect

to z vanish. Numerical calculations lead to∫
V
d~r

(
∂Ω̂
∂x

)2

=
∫
V
d~r

(
∂Ω̂
∂y

)2

and
∫
V
d~r
∂Ω̂
∂x
· ∂Ω̂
∂y

= 0.

This can be explained in the following way. In the absence of a current and without

anisotropy terms, neither the x nor the y direction is preferred. Besides, both

directions are “independent” of each other. Therefore, the matrix D is given by

D = X ·


1 0 0

0 1 0

0 0 0


with

X =
∫
V
d~r

(
∂Ω̂
∂x

)2

=
∫
V
d~r

(
∂Ω̂
∂y

)2

=
1
2

∫
V
d~r (∇Ω̂)2.

Here, X can be interpreted as a kinetic energy. It is the same term that appears in

the Ginzburg-Landau free energy functional. Therefore, we have∫
V
d~r · αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂dtΩ̂

∂ ~̇ϕ
= −αGD · ~wαGβ and

−
∫
V
d~r

(
Ω̂× ∂Ω̂

∂~ϕ

)
·
(
d

dt
Ω̂ + (~vs · ∇)Ω̂

)
= −

∫
V
d~r 4π

(
~Φ× ~w

)
.

The second equation may be written in a matrix notation as well:

∫
V
d~r 4π

(
~Φ× ~w

)
=
∫
V
d~r 4π


0 −Φz 0

Φz 0 0

0 0 0

 · ~w =:


0 −Y 0

Y 0 0

0 0 0

 · ~w =: T · ~w

with Y =
∫
V d~r 4πΦz.

Since the z-component of Eq. (8) vanishes, the above relation reduces to an

effective 2× 2 matrix equation:(
0 −Y
Y 0

)
· (~vs − ~̇ϕ) = αG

(
X 0

0 X

)
·
(
β

αG
~vs − ~̇ϕ

)

⇒

(
βX Y

−Y βX

)
· ~vs =

(
αGX Y

−Y αGX

)
· ~̇ϕ. (16)

Note that in the 2× 2 matrix equation ~vs and ~̇ϕ denote the reduced two component

vectors which include only the x and y components. Since

det

(
αGX Y

−Y αGX

)
= α2

GX
2 + Y 2 6= 0,
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it is always possible to invert the matrix on the r.h.s. of Eq. (16) and to find a

solution for ~̇ϕ:

~̇ϕ =

(
αGX Y

−Y αGX

)−1

·

(
βX Y

−Y βX

)
· ~vs

=
1

α2
GX

2 + Y 2
·

(
αGβX

2 + Y 2 XY (αG − β)

XY (β − αG) αGβX
2 + Y 2

)
· ~vs.

Rewriting this solution in a three-dimensional notation one gets

~̇ϕ =
β

αG
~vs +

(
1− β

αG

)
Y 2

α2
GX

2 + Y 2
~vs −

(
1− β

αG

)
αGX

α2
GX

2 + Y 2
· Y (ẑ × ~vs),

where

X =
∫
V
d~r

(
∂Ω̂
∂x

)2

=
∫
V
d~r

(
∂Ω̂
∂y

)2

=
∫
V
d~r

1
2

(∇Ω̂)2 and

Y =
∫
V
d~r 4πΦz = 4π

∫
V
d~rΦz

which reproduces Eq. (15).

7.2 The Ansatz for the A-Phase

To get further results, we have to characterize the magnetic structure in the A-phase

by some time-dependent parameters. As variational parameters we choose

• Two helical vectors ~q1, ~q2 in an arbitrary direction, [3 + 3]

while the third vector ~q3 is given by ~q3 = −~q1 − ~q2.

• The corresponding complex Fourier components

~mqj = ~m(r)
qj + i ~m(i)

qj , j = 1, 2, 3. [2 ∗ 3 ∗ 3]

with the real ~m(r)
qj and imaginary part ~m(i)

qj .

• The uniform magnetization ~mh in an arbitrary direction. [3]

Consequently, our ansatz consists of 6 + 18 + 3 = 27 parameters uj (j = 1, . . . , 27):

~u =
{
~q1, ~q2, ~mh, ~m

(r)
q1 , ~m

(r)
q2 , ~m

(r)
−q1−q2 , ~m

(i)
q1 , ~m

(i)
q2 , ~m

(i)
−q1−q2

}
.

To simplify calculations and to minimize computing time, we neglect amplitude

fluctuations by normalizing the magnetic structure only globally and not locally, i.e.

we assume the normalization factor N to be constant in space and time. In principle,

the qualitative results should be the same, although the quantitative results will

differ slightly.
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Therefore, our ansatz for the magnetization in the A-phase is given by

~MA(~r, t) =
1
N

[
~mh +

3∑
j=1

(
~m~qje

i~qj~r + ~m∗~qje
−i~qj~r

)]

=
1
N

[
~mh +

6∑
j=1

~m~qje
i~qj~r

]
.

In the second line, ~q4 is given by −~q1, ~q5 = −~q2, and ~q6 = −~q3. We determine the

normalization N such that the integrated Skyrmion density is equal to −1.

7.3 The Calculation Scheme

The calculation scheme is as follows:

1. Calculate the approximative ground state solutions u0
j by minimizing the free

energy

G ≈ F [ ~M0]

with respect to the variational parameters. In the following, we will denote u0
j

as ground state values or ground state solutions and the fluctuation matrix by

M, where

Mjk =
δ2F

δMjδMk
.

2. We expect that a small spin-polarized current will change the ground state

values smoothly. Therefore, we perform a pertubation ansatz for the dynamical

variables uj up to linear order in the spin-polarized current:

uj = u0
j + ∆uj +O(|~vs|2)

with ∆uj ∝ |~vs|.

3. Calculate the equations of motions for uj up to linear order in |~vs|:

• The dissipation and the Berry phase term are linear in ~vs. Therefore, it

suffices to plug in the ground state solution. These two terms will add up

to a vector, independent of ∆uj , which we multiply by the magnetization

amplitude M and denote the result as ~c.

• ∂F
∂uj

is, to linear order in |~vs|, given by

∂F

∂uj

∣∣∣
uj=u0

j+∆uj
=
∂F

∂uj

∣∣∣
u0
j

+
∂2F

∂uj∂uk
·∆uk +O(|~vs|2)

⇒ ∂F

∂uj

∣∣∣
uj=u0

j+∆uj
=Mjk∆uk +O(|~vs|2).
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7. A-Phase

• Combining these two observations, this leads to the equation

Mjk∆uk = cj . (17)

4. To find solutions for ∆uk we have to, in principle, invert the matrixM. How-

ever, M has zero eigenvalues originating from Goldstone modes. Therefore,

we have to

• first identify the zero eigenvalues,

• and then check that ~c is orthogonal the corresponding eigenmodes. Phys-

ically, this means that the two contributions to ~c, the Berry phase and

dissipation term, do not couple to the Goldstone modes.

• If so, we can define M̃ := M + |0〉 d 〈0|, where we project out the zero

modes |0〉 with an arbitrary prefactor d 6= 0. Since ~c is orthogonal to the

eigenmodes, the result does not dependent on d.

• M̃ may now be inverted, and we finally get

~∆u =
(
M̃
)−1

~c.

We may apply this scheme to the case, where we consider a rotational invariant free

energy functional F , and to the case, where we add anisotropy terms to F . Before

we pursue this procedure, we will concern ourselves with issues that are relevant for

both cases.

In the first step, we calculate the fluctuation matrix M, where

Mjk =
δ2F

δujδuk
.

It is a hermitian 27 × 27 matrix, i.e. M† = (M∗)T = M. Hence, it has only real

eigenvalues as expected. Moreover, M may be diagonalized, and the normalized

eigenvectors can be chosen such that they form an orthonormal basis.

In the third step, we calculate the integrals over the volume V with the same

calculation rules as before for the helix (see App. A).

In the fourth and last step, we identify the eigenmodes. M has two transla-

tional eigenmodes ~t1 and ~t2, which are 27-components vectors. These are useful to

determine ~̇ϕ by demanding that

~t1 · ~c = 0 ∧ ~t2 · ~c = 0 ∧ ~̇ϕ · (q̂1 × q̂2) = 0.

The third condition ensures that the structure drifts only in the plane of the three

momentum vectors since the magnetic structure is translational invariant in the

normal direction of this plane. To demonstrate that these conditions are equivalent
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7.3. The Calculation Scheme

to the method used above for determining ~̇ϕ, we consider the Berry phase term and

the dissipation term for ϕx. Using the abbrevations defined in App. A, i.e.

Buj :=
∫
V
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂,

Duj :=
∫
V
d~r αG

∂Ω̂
∂uj
·
(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂,

we get in the static limit:

0 != Bϕx +Dϕx =
∫
V
d~r
(
−Ω̂× (~w · ∇)Ω̂ + αG(~wαGβ · ∇)Ω̂

)
· ∂Ω̂
∂ϕx

,

∂Ω̂
∂ϕx

= −∂Ω̂
∂x

.

To take the derivative with respect to x for the ansatz of the A-phase

~MA(~r, t) =
1
N

[
~mh +

6∑
j=1

~m~qje
i~qj~r

]
,

is equivalent to calculating

∂ ~MA(~r, t)
∂x

=
1
N

6∑
j=1

i qx ~m~qje
i~qj~r =

6∑
j=1

∂ ~MA(~r, t)
∂ ~m~qj

·
(
i qx ~m~qj

)
.

The last expression can be interpreted as scalar product of the two 27-component

vectors ∂ ~MA
∂uj
· ~txj , where the translation mode in x direction ~tx is given by

~tx =
{
~0, ~0, ~0, −q1x ~m

(i)
q1 , −q2x ~m

(i)
q2 ,−(q1x + q2x)~m(i)

−q1−q2 ,

q1x ~m
(r)
q1 , q2x ~m

(r)
q2 , (q1x + q2x)~m(r)

−q1−q2

}T
with ~0 = {0, 0, 0}T . Using this result, we obtain for the A-phase:

0 != Bϕx +Dϕx =
∫
V
d~r
(
− ~MA × (~w · ∇) ~MA + αG(~wαGβ · ∇) ~MA

)
· ∂

~MA

∂uj
· ~txj

=
(
Buj +Duj

)
· ~txj = ~c · ~tx.

We obtain similar results for ϕy and ϕz. Considering ~t1 and ~t2 as a linear combination

of ~tx, ~ty and ~tz we may infer that ~t1 · ~c = 0 and ~t2 · ~c = 0.

This implies that the drift velocity is adjusted such that the overlap of the

translation modes and ~c vanishes. Therefore, in the second part of the last step

we only have to check this condition for other potential Goldstone modes. If there

are no other Goldstone modes present, then the conditions for ~̇ϕ ensure that the

equation Mjk∆uk = cj is solvable.
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7. A-Phase

At the end of the last step, we get the current-induced distortion of the ground

state variables. To explain the position changes of the neutron peaks, we are particu-

larly interested in the change of the momentum vectors, i.e. the first six components

of ~u. Without an explicit calculation one knows that the three momentum vectors

should add up to zero. For this reason, there are only the following possibilities or

a superposition thereof to change the momentum vectors:

• The plane of the q-vectors tilts, but the 120◦ symmetry remains.

• The three momentum vectors rotate slightly in the plane, but the 120◦ sym-

metry remains.

• The 120◦ symmetry does not remain. The three q-vectors change their angles

and their lengths.

In the following, we consider two different cases, the first one without anisotropy

terms, and the second one including some anisotropy terms. Below, we report only

the basic results of the numerical calculations. Some explicit numerical results are

summarized in App. D.

7.4 The Rotational Invariant Case: No Anisotropy Terms

In the rotational invariant case, the fluctuation matrix M has an additional Gold-

stone mode, a rotation mode denoted by
−→
rot in the following. However, neither the

Berry phase nor the dissipation term couple to
−→
rot, i.e. ~c · −→rot = 0. Obeying the

calculation rules of the fourth step we get the current-induced distortions of the

ground state variables. Obviously, the lengths of the q-vectors is almost constant

under the influence of the current, thus the threefold rotation symmetry basically

remains. However, the plane of the three q-vectors changes as it tilts slightly, i.e.

it obtains a component in the direction of the magnetic field. Below we repeat the

calculation with a weak anisotropy term included.

7.5 The A-Phase Including Anisotropy Terms

In this part, we will add terms to the free energy functional that break the rota-

tional symmetry. Therefore, the rotation mode (still denoted by
−→
rot) is no longer a

Goldstone mode of the fluctuation matrix. Nevertheless, the modulus of the corre-

sponding eigenvalue is small, since these anisotropy terms are small. The basic idea

is that in the anisotropic case ~c couples to the eigenmode of this small eigenvalue

which, by inverting the matrix, may lead to a huge prefactor and therefore to a

measureable effect.
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7.5. The A-Phase Including Anisotropy Terms

First, let us consider the rotational invariant free energy functional. To leading

order, it is given by

F [ ~M ] =
∫
V
d~r
(
r0
~M2 + J(∇ ~M)2 + 2D ~M · (∇× ~M) + U( ~M2)2 − ~B · ~M

)
.

To simplify the following calculations, we rescale the free energy functional in the

following way:

~̃r = Q~r ⇒ ~r = 1/Q ~̃r, ∇ = Q∇̃

~̃M = [U/(JQ2)]1/2 ~M ⇒ ~M = [(JQ2)/U ]1/2 ~̃M

~̃B = [U/(JQ2)3]1/2 ~B

such that |~qj | ≈ 1 (j = 1, 2, 3). Applying this scaling transformation to the Ginzburg-

Landau free energy functional (U, J,D > 0 Q = | ~Q| = D/J) we get

F [ ~̃M ] =
J2Q

U

∫
V
d~r
(

(1 + t) ~̃M2 + (∇̃ ~̃M)2 + 2 ~̃M · (∇̃ × ~̃M) + ( ~̃M2)2 − ~̃B · ~̃M
)
,

where t = r0/(JQ2) − 1. This rescaling has the additional advantage that the

rescaled free energy functional depends only on one parameter t and on a global

prefactor. We observe that the free energy functional scales linear in Q. To simplify

the notation, we omit the tildes in the following and keep in mind that we are using

rescaled units.

To this free energy functional we add the following two anisotropy terms:

F
(1)
ani = δ1 ·

∫
V
d~r
{

[∂xMy]2 + [∂yMz]2 + [∂zMx]2
}

= δ1 ·
3∑
j=1

{
[(~qj)x]2

∣∣(~m~qj )y
∣∣2 + [(~qj)y]2

∣∣(~m~qj )z
∣∣2 + [(~qj)z]2

∣∣(~m~qj )x
∣∣2}

and

F
(2)
ani = δ2 ·

∫
V
d~r
{
~M(∂6

x + ∂6
y + ∂6

z ) ~M
}

= δ2 ·
3∑
j=1

{
[(~qj)x]6 + [(~qj)y]6 + [(~qj)z]6

}∣∣~m~qj

∣∣2
with the prefactors δ1 and δ2 determining their relative strength. The first prefactor,

δ1, is quadratic in spin-orbit coupling. It provides an overlap of ~c and the rotation

mode
−→
rot to lowest order spin-orbit coupling. This overlap is linear in δ1 and |~vs|,

but depends only barely on δ2. The second prefactor is of higher order in spin orbit

coupling, and pins the A-phase to liner order. It provides the “mass” of the rotation

mode such that for δ2 6= 0 we do not have a Goldstone mode. Thus, F is given by

F = γ ·
(
F2 + F4 + F

(1)
ani + F

(2)
ani + FB

)
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7. A-Phase

with

F2 =
∫
d~r
[
(1 + t) ~M2 + (∇ ~M)2 + 2 ~M · (∇× ~M)

]
,

F4 =
∫
d~r ( ~M2)2,

FB = −
∫
d~r ~B · ~M.

Repeating the calculation with these weak anisotropies, we get the current-induced

distortions of the ground state variables. Some explicit numerical results are sum-

marized in App. D.

We again observe that the lengths of the q-vectors are almost constant under the

influence of the current so that the threefold rotation symmetry basically remains.

As before, the plane of the three q-vectors tilts. However, we also observe a rota-

tion of the q-vectors, where the magnitude of the rotation depends strongly on the

directions of ~B and ~vs with respect to the crystal. For example, there is no rotation

for the magnetic field applied in the 〈001〉 direction. In this special case, there is an

additional rotation symmetry of 180◦ around the ẑ axis such that the contribution

from the Berry phase term to the rotation angle does not provide a term linear in

|~vs|. On the other hand, for a magnetic field in the 〈110〉 direction, this rotation

symmetry does not exist.

Let us rewrite the rotation angle θ between the ground state wave vectors and

the current-distorted wave vectors by

cos(θ) =
q̂0

2 · q̂2

|q̂0
2| · |q̂2|

.

For small angles θ we may expand the cosine such that

θ ≈ ±

√
2
(

1− q̂0
2 · q̂2

|q̂0
2| · |q̂2|

)
. (18)

For a magnetic field applied in the 〈110〉 direction, we find θ to be proportional to

θ ∼ |~vs| ·
δ1

δ2

(
β

αG
− 1
)
αG · ~ ·

√
JQ2

U

U

J2Q3
. (19)

Here, we also applied the current in the 〈110〉 direction, which is a ground state

direction of one of the three helices and perpendicular to the magnetic field.

Some of these factors are easy to understand. By construction, we get a term that

is linear in the strength of the current |~vs|. The rotation angle should be proportional

to δ1 since the first anisotropy term provides an overlap with the rotation mode. δ2

is a measure of the eigenvalue that corresponds to the rotation mode. By inverting

the matrix one therefore obtains mainly 1/δ2. This huge prefactor 1/δ2 compensates
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7.6. Results for the A-Phase

the other small prefactors and leads to an appreciable effect. In the Galilei-invariant

case, β = αG, we also do not expect a rotation of the A-phase since then ~̇ϕ = ~vs, and

the Skrymion density does not enter. Unless the rotation angle is proportional to αG,

the main contribution for the rotation comes from the Berry phase term, because in

the limit of small αG the difference ~̇ϕ− ~vs vanishes for the A-phase. Therefore, the

Berry phase term is proportional to αG. For a single helix the situation is different as

~̇ϕ depends only on β/αG and not on αG alone. The remaining factors ~ ·
√

JQ2

U
U

J2Q3

are due to physical rescaling. For further details on this subject see App. D.

7.6 Results for the A-Phase

Concluding this Section we will summarize the results we have obtained. We have

shown that the magnetic pattern of the A-phase drifts, with the drift velocity

~̇ϕ =
β

αG
~vs +

(
1− β

αG

)
1

α2
GX

2 + 1
~vs +

(
1− β

αG

)
αGX

α2
GX

2 + 1
ẑ × ~vs,

where X ≡
∫
V d~r

1
2 (∇Ω̂)2. Moreover, originating in a non-zero Skyrmion density

and slight crystal anisotropies, the three momentum vectors, constituting the A-

phase tilt and rotate, in general. The rotation angle between the ground state wave

vectors and the current-distorted wave vectors is proportional to

θ ∼ |~vs| ·
δ1

δ2

(
β

αG
− 1
)
αG · ~ ·

√
JQ2

U

U

J2Q3
.

A related phenomenon, that also only occurs because of a non-zero Skyrmion

density is the topological Hall effect, that is described in the following Section.
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8 Topological Hall Effect in the A-Phase

Applying an electric current flows through a conductor in a magnetic field, the

magnetic field exerts a transverse force on the moving charge carriers leading to a

potential difference transverse to the current. The presence of this measurable trans-

verse voltage is called the Hall effect. The Hall resistivity ρxy is the proportionality

factor between the current and the Hall voltage. In nonmagnetic materials, ρxy is

proportional to the magnetic field B.

However, in many ferromagnetic materials there is an additional contribution to

the Hall resistivity, denoted as the anomalous Hall effect (AHE). It is proportional

to the magnetization of the material, ρxy = R0B + µ0RsM . Here, R0 and RS are

the normal and anomalous Hall coefficients, respectively.

However, in Ref. [47] the authors present another contribution to the Hall re-

sistivity that occurs in chiral spin textures, the so-called “topological Hall effect”.

The origin of this extra Hall contribution is a Berry phase that can produce an ad-

ditional effective magnetic field BΦ via the spin degrees of freedom. The basic idea

behind the topological Hall effect is as follows. A conduction electron that moves

through a chiral metal may acquire a Berry phase ΦB when following adiabatically

the spin polarization of topological objects [46, 48]. This Berry phase can be viewed

as an Aharonov-Bohm phase resulting from an effective magnetic field ~Beff = Φ0
~Φ

with opposite sign for majority and minority spins. Here, Φ0 = h/e is the flux

quantum for a single electron, and ~Φ is the Skyrmion density, given by Eq. (14).

Thus, BΦ produces a Hall conductivity σtop that is proportional to ~Φ. The Berry

phase reflects the integrated Skyrmion density per unit cell, which is a measure for

a winding number of the topological spin structur and therefore quantized as an

integer number.

Experimentally, this topological Hall contribution can be well distinguished from

both conventional Hall effect contributions. Therefore Hall experiments are a means

to detect topological spin structures in helical magnets [13, 46, 47, 49].

As mentioned in Ref. [46], a helical state with a single wavevector does not have

a Skrymion density, i.e. it vanishes. Hence, there is no topological Hall effect in the

helical or conical phase. This was also confirmed by experiments [13]. Only a proper

superposition of spiral states lead to a finite Skyrmion density. Skyrmion textures

naturally leads to a non-zero chirality. Theoretically, it is predicted that σtop is

proportional to the Skyrmion number or to the Skyrmion density, respectively [47].

Neubauer et al. used the properties of the topological Hall effect to substantiate

the anti-Skyrmion lattice in the A-Phase [13]. They used the direct measurement of

the Skyrmion density via the topological Hall effect of the quantized Berry phase.

Most of the following work in this Section has been published in Ref. [13].
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8. Topological Hall Effect in the A-Phase

Figure 12: Hall resistivity of MnSi. Figure taken from Ref. [13].

Fig. 12 shows a typical measurement for the Hall resistivity ρxy of MnSi for ~B ‖
〈110〉 and the current in the 〈001〉 direction. At room temperature, the behavior is

dominated by the normal Hall effect. For low temperatures, however, the behaviour

is more complicated.

Since the topological Hall effect is predicted to occur only in the A-phase, a

detailed measurement of the Hall resistivity in the temperature and field range of

the A-phase was performed. This is shown in the left part of Fig. 13.

To better see the additional topological contribution, the authors approximated

the Hall signal linearly from below to above the A-phase and subtracted this part

of the total signal. The resulting contribution ∆ρxy is shown on the right part of

Fig. 13. The curves have been shifted vertically for better visibility.

The main results of ∆ρxy are the following:

• The sign of the signal is opposite to the normal Hall effect.

• The magnitude of ∆ρxy is approximately given by ∆ρxy ≈ 4.5± 1 nΩ cm.

• The signal is roughly the same for the two different orientations of the magnetic

field ~B ‖ 〈110〉 and ~B ‖ 〈111〉.

A simple formula for ∆ρxy can be given in the “adiabatic limit”:

∆ρxy ≈ PR0B
z
eff. (20)

In this limit, the lifetime of the conduction electrons is taken to be infinite, and when

passing through the solid the spin polarization of the electrons follow smoothly the

magnetic structure. In Eq. (20), the applied magnetic field is in the ẑ direction, R0

is the normal Hall constant, and P is the local spin polarization of the conduction

electrons. Within this simplified formula, some of the main features observed may

be explained. Since the A-phase of MnSi forms a lattice of anti-Skyrmions, the
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8. Topological Hall Effect in the A-Phase

Figure 13: Hall resistivity of MnSi in the A-phase; Left: Total Hall resistivity; Right:

Topological part of the Hall resistivity. Figures taken from Ref. [13].

Skyrmion density integrated over each two-dimensional magnetic unit cell is −1.

This implies that the effective field is quantized and oriented opposite to the applied

field. Moreover, this formula allows a theoretical estimate of the size of ∆ρxy that

is in good argeement with the experiment.

Although the Skyrmion density already appears in the equations of motion for

the A-Phase, in particular in the equation for the drift velocity, the emergence of

a Berry phase can be seen more explicitly by deriving the Landau-Lifshitz-Gilbert

equation from a variational principle. We will discuss this derivation in the following

Section.
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9 Derivation of the Landau-Lifshitz-Gilbert Equation

From a Variation Principle

The Landau-Lifshitz-Gilbert equation(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t) =

Ω̂(~x, t)×
(
− 1
M

δF [Ω̂]
δΩ̂(~x, t)

)
− αG Ω̂(~x, t)×

(
d

dt
+

β

αG
~vs · ∇

)
Ω̂(~x, t)

for a constant magnetization amplitude M may be derived from the variational

principle [28] at least up to a surface term discussed below:

δA[Ω̂]
δΩ̂(~x, t)

=
δR[Ω̂]

δdtΩ̂(~x, t)
. (21)

In this formula, the dissipation functional R is given by

R[Ω̂] =
αG
2

∫
dt

∫
V
d~x

[(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂(~x, t)

]2

,

and A is the action functional

A[Ω̂] = −
∫
dt

{∫
V
d~x · ~A(Ω̂(~x, t)) ·

(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t) +

1
M
F [Ω̂(~x, t)]

}
.

Here, ~A(Ω̂(~x, t)) is the vector potential associated with the topological Berry phase

term according to a magnetic field of a monopole. In spherical coordinates, i.e.

Ω̂(r, θ, φ) = r(sin θ cosφ, sin θ sinφ, cos θ)T , a possible parametrization is given by

~A(r, θ, φ) =
1− cos θ
r sin θ

êφ with êφ = (− sinφ, cosφ, 0)T .

A derivation of this formula, which is singular for θ = π, may be found in App. B.

Thus, on the unit sphere, |Ω̂| = r = 1, one gets

~A(θ, φ) =
1− cos θ

sin θ
êφ.

Moreover, in spherical coordinates A is given by

A[θ, φ] = −
∫
dt

{[∫
V
d~x (1− cos θ(~x, t))

(
d

dt
+ (~vs · ∇)

)
φ(~x, t)

]
+

1
M
F [θ, φ]

}
,

(22)

because (r = 1)

Ω̂(~x, t) = Ω̂(θ(~x, t), φ(~x, t)) =


sin θ cosφ

sin θ sinφ

cos θ

 , (23)
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9. Variation Principle

and

(~vs · ∇)Ω̂ = êθ ((~vs · ∇)θ) + êφ ((~vs · ∇)φ)) sin θ.

Thus,

A[Ω̂] · (~j · ∇)Ω̂ =
1− cos θ

sin θ
êφ ·

(
êθ

(
(~j · ∇)θ

)
+ êφ

(
(~j · ∇)φ

)
sin θ

)
= (1− cos θ) · (~j · ∇)φ.

Performing a similar calculation for the time derivative of Ω̂ we obtain Eq. (22).

To derive the Landau-Lifshitz-Gilbert equation from the variational principle,

one has first to calulate both variations of Eq. (21). In a second step one has to take

the cross product on both sides of Eq. (21).

Let us start with the fist step: The action functional contains the Ginburg-

Landau energy functional and two Berry-phase terms. Therefore, we divide it into

three parts:

A[Ω̂] = −
∫
dt

{∫
V
d~x · ~A(Ω̂(~x, t)) ·

(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t) +

1
M
F [Ω̂(~x, t)]

}
=: −

(
A(t)[Ω̂(~x, t)] +A(∇)[Ω̂(~x, t)] +A(F )[Ω̂(~x, t)]

)
(24)

with

A(t)[Ω̂(~x, t)] =
∫
dt

∫
V
d~x · ~A(Ω̂(~x, t)) · d

dt
Ω̂(~x, t),

A(∇)[Ω̂(~x, t)] =
∫
dt

∫
V
d~x · ~A(Ω̂(~x, t)) · (~vs · ∇) Ω̂(~x, t),

A(F )[Ω̂(~x, t)] =
∫
dt

1
M
F [Ω̂(~x, t)].

For these three terms we get

δA(t)[Ω̂(~x, t)]
δΩj(~y, t′)

=
(
dΩ̂(~y, t′)
dt′

× Ω̂(~y, t′)
)
j

δA(∇)[Ω̂(~x, t)]
δΩj(~y, t′)

=
([

(~vs · ∇)Ω̂(~y, t′)
]
× Ω̂(~y, t′)

)
j

+
∫
S(V )

dσ(x) δ(~x− ~y)Aj [Ω̂(~x, t′)](~vs · ~ν) (25)

δA(F )[Ω̂(~x, t)]
δΩj(~y, t′)

=:
1
M

δF [Ω̂(~x, t′)]
δΩ̂(~y, t′)

.

A detailed calculation of the first two terms is summarized in App. C. In the last

equation, we consider the functional F [Ω̂] at a fixed time t′ to eliminate the time

integral. Exchanging ~x, ~y and t, t′ we get

δA[Ω̂]
δΩ̂(~x, t)

= Ω̂(~x, t)×
(
d

dt
+ ~vs · ∇

)
Ω̂(~x, t)− 1

M

δF [Ω̂]
δΩ̂(~x, t)

−
∫
S(V )

dσ(y) δ(~y − ~x)Aj [Ω̂(~y, t)](~vs · ~ν). (26)
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9. Variation Principle

The variation of the dissipation functional with respect to dtΩ̂(~x, t) is then given by

δR[Ω̂]
δdtΩ̂(~x, t)

= αG

(
d

dt
+

β

αG
~vs · ∇

)
Ω̂(~x, t). (27)

In the second step, we have to take the cross product with Ω̂ on both sides of

Eq. (21). Therefore, we consider the relation

Ω̂(~x, t)× δR[Ω̂]
δdtΩ̂(~x, t)

= αGΩ̂(~x, t)×
(
d

dt
+

β

αG
~vs · ∇

)
Ω̂(~x, t).

Neglecting the boundary term and using that Ω̂ is a unit vector similiar to Eq. (7)

we get for the action functional

Ω̂(~x, t)× δA[Ω̂]
δΩ̂(~x, t)

= Ω̂(~x, t)×
[
Ω̂(~x, t)×

(
d

dt
+ (~vs · ∇)

)
Ω̂(~x, t)

]
+ Ω̂(~x, t)×

(
− 1
M

δF [Ω̂]
δΩ̂(~x, t)

)
= −

(
d

dt
+ (~vs · ∇)

)
Ω̂(~x, t) + Ω̂(~x, t)×

(
− 1
M

δF [Ω̂]
δΩ̂(~x, t)

)
.

Combining the two formulas we obtain the Landau-Lifshitz-Gilbert equation.

9.1 Derivation of the Equations of Motion for Dynamical Variables

from a Variation Principle

In principle, it is possible to derive the effective equations of motion (cf. Eq. (8)) from

a variation principle under the condition that one neglects the boundary term which

occurs in Eq. (25). However, including this term we get an additional contribution

that is not necessarily a surface term. To demonstrate this, we will use the following

lemma: Let F (t) be a sufficiently smooth function that depends on t. If F depends

on a parameter u = u(t), such that F (t) = F (u(t)), then

δF (t′)
δu(t)

=
∂F (u)
∂u

δ(t′ − t).

Let the magnetization direction Ω̂ be parameterized by a few time-dependent vari-

ables uj (j = 1, . . . , n), i.e. Ω̂(~r, t) = Ω̂(~x, u1(t), . . . , un(t)) as in Sec. 5.3. If uj solves

the variational equation
δA[Ω̂]
δuj(s)

=
δR[Ω̂, dtΩ̂]
δdtuj(s)

(28)

and if one neglects the boundary term occuring in Eq. (25) then uj solves Eq. (8).

To show this assertion, we assume without loss of generality n = 1 and set

u1(t) = u(t). We start from the variation principle (cf. Eq. (21)) and show that if

Ω̂ solves Eq. (21), then uj solves Eq. (28). By chain rule we get

d

dt
Ω̂(~x, u) =

∂Ω̂(~x, u)
∂u

u̇
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9.1. Equations of Motion From a Variation Principle

which implies that

∂(dtΩ̂(~x, u, u̇))
∂u̇

∣∣∣∣
u

=
∂Ω̂(~x, u)
∂u

because
∂Ω̂(~x, u)
∂u̇

= 0.

Applying above lemma we get

δΩ̂(~y, t′)
δu(t)

=
∂Ω̂(~y, u)
∂u

δ(t′ − t) and
δ(dtΩ̂(~y, t′))

δu̇(t)

∣∣∣∣
u

=
∂(dtΩ̂(~y, u, u̇))

∂u̇

∣∣∣∣
u

· δ(t′ − t).

This implies

0 =
∫
V
d~y

∫
dt
δA[Ω̂(~x, t)]
δΩ̂(~y, t′)

δ(t− t′)

=0︷ ︸︸ ︷(
∂Ω̂(~y, t)
∂u

− ∂(dtΩ̂(~y, t))
∂u̇

∣∣∣∣
u

)

=
∫
V
d~y

∫
dt
δA[Ω̂(~x, t)]
δΩ̂(~y, t′)

(
δΩ̂(~y, t′)
δu(t)

− δ(dtΩ̂(~y, t′))
δu̇(t)

∣∣∣∣
u

)
=
∫
V
d~y

∫
dt
δA[Ω̂(~x, t)]
δΩ̂(~y, t′)

δΩ̂(~y, t′)
δu(t)

−
∫
V
d~y

∫
dt
δR[Ω̂(~y, t), dtΩ̂(~x, t)]

δ(dtΩ̂(~y, t))
δ(dtΩ̂(~y, t′))

δu̇(t)

∣∣∣∣
u

=
δA[Ω̂(~x, t)]
δu(t)

− δR[Ω̂(~x, t), dtΩ̂(~x, t)]
δu̇(t)

,

where in the penultimate line we applied Eq. (21). Neglecting the boundary term

which appears in Eq. (25) we obtain the assertion.

In principle, this proof is sufficient, but one does not see clearly the influence of

the boundary term. To get a better understanding of this additional term we will

perform a second proof: Applying chain rule we get

δA[Ω̂(~x, t)]
δuj(s)

=
∫
V
d~y

∫
dt′
δA[Ω̂(~x, t)]
δΩ̂j(~y, t′)

∣∣∣∣∣
Ω̂=Ω̂(u)

· δΩ̂j(~y, t′)
δu(s)

. (29)

Using above lemma we obtain

δΩj(~y, t′)
δu(s)

=
∂Ωj(~y, u)

∂u
δ(s− t′)

and inserting the result of App. C, Eq. (38) we get

δA[Ω̂(~x, t)]
δu(s)

=
∫
V
d~y

∫
dt′
[(

Ω̂(~y, t′)×
(
d

dt
+ ~vs · ∇

)
Ω̂(~y, t′)

)
j

− 1
M

δF [Ω̂]
δΩ̂j(~y, t′)

−
∫
S(V )

dσ(y′) δ(~y ′ − ~y)Aj [Ω̂(~y ′, t′)](~vs · ~ν)
]
· ∂Ωj(~y, t′)

∂u
δ(s− t′)

∣∣∣∣∣
Ω̂=Ω̂(~y,u)

=
∫
V
d~y

(
Ω̂(~y, s)×

(
d

dt
+ ~vs · ∇

)
Ω̂(~y, s)

)
· ∂Ωj(~y, s)

∂u
− 1
M

∂F [Ω̂]
∂u

−
∫
V
d~y

(∫
S(V )

dσ(y′) δ(~y ′ − ~y)Aj [Ω̂(~y ′, s)](~vs · ~ν)
)
· ∂Ωj(~y, s)

∂u

∣∣∣∣∣
Ω̂=Ω̂(~y,u)
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9. Variation Principle

The boundary term may be simplified further:∫
S(V )

dσ(y′)

∫
V
d~y

∂Ωj(~y, s)
∂u

δ(~y ′ − ~y)Aj [Ω̂(~y ′, s)](~vs · ~ν)

=
∫
S(V )

dσ(y′)∂Ωj(~y, s)
∂u

Aj [Ω̂(~y ′, s)] (~vs · ~ν)︸ ︷︷ ︸
=vsi êi·~ν

applying Gauss theorem yields

=
∫
V
d~y ′ vsi

d

dy′i

(
∂Ωj(~y ′, s)

∂u
Aj [Ω̂(~x, s)]

)
and a renaming of variables leads to

=
∫
V
d~x (~vs · ∇)

(
∂Ωj(~x, s)

∂u
Aj [Ω̂(~x, s)]

)
.

A technical problem to calculate this term is the explicit appearance of the vector

potential A[Ω̂(~x, s)] which cannot be written in a coordinate invariant form (see

App. B).

For the dissipation functional we may perform the same steps. Because of ∂Ω̂
∂u̇ = 0

we get

δR[Ω̂(~x, t), dtΩ̂(~x, t)]
δu̇(s)

=
∫
V
d~y

∫
dt′
δR[Ω̂(~x, t), dtΩ̂(~x, t)]

δ(dtΩ̂j(~y, t′))

∣∣∣∣∣
Ω̂=Ω̂(~y,u)

· δ(dtΩ̂j(~y, t′))
δu̇(s)

.

(30)

Using the above lemma again with

δ(dtΩj(~y, t′))
δu̇(s)

=
∂(dtΩj(~y, u))

∂u̇
δ(s− t′)

and the result of Eq. (27) we may simplify Eq. (30). To sum up we get

δA[Ω̂(~x, t)]
δuj(s)

= −
∫
V
d~y

(
Ω̂(~y, s)× ∂Ω̂(~y, s)

∂uj

)
− 1
M

∂F [Ω̂(~x, s)]
∂uj

−
∫
V
d~y (~vs · ∇)

(
∂Ωk(~y, s)
∂uj

Ak[Ω̂(~y, s)]
)
,

δR[Ω̂(~x, t), dtΩ̂(~x, t)]
δu̇j(t)

= αG

∫
V
d~x

[(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂(~x, t)

]
· ∂(dtΩ̂)
∂u̇j

.

In the absence of the last term in δA[Ω̂(~x, t)]/δuj(s), this reproduces the equations

of motion. Thus, it arises the question of the meaning of the third term.

9.2 Discussion of the Boundary Term

As one may derive the equations of motion directly from of Eq. (4), we claim that

this is just an artefact of the choice of the action functional. At first glance, it seems
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9.2. Discussion of the Boundary Term

that the additional term is only a boundary term and will not influence the main

part. However, if one first calculates the action functional and then, in a second

step, takes the derivative with respect to the dynamical variables, this may produce

some errors, as we will show in the following example.

Let us consider the simplest case of a helix with no applied magnetic field, ~B = 0,

and in the abscence of Gilbert damping, αG = β = 0, and without pinning terms.

In this case, a helix in an arbitrary direction solves the Landau-Lifshitz-Gilbert

equation, for example in the z-direction:

Ω̂(~x, t) = cos [q(z + ϕz(t))] x̂+ sin [q(z + ϕz(t))] ŷ, (31)

where ϕz = ~vsz · t. For a normalized q-vector we have q = 1, but for clarity we write

here q instead of 1.

Let us now consider the representation of A(∇)[Ω̂(~x, t)] in spherical coordinates.

With Ω̂(~x, t) = êr(θ(~x, t), φ(~x, t)) we get

A(∇)[Ω̂(~x, t)] =
∫
dt

∫
V
d~x ~A(Ω̂(~x, t)) · (~vs · ∇)Ω̂(~x, t)

=
∫
dt

∫
V
d~x (1− cos(θ))(~vs · ∇)φ

=:
∫
dtESST.

A comparison of Eq. (31) and Ω̂(~x, t) = êr(θ, φ) yields

cos(θ) != 0 ⇒ θ =
π

2
+ nπ, n ∈ Z

sin(θ) cos(φ) != cos(qz + ϕz(t)) ⇒ φ = qz + ϕz(t) + 2πm, m ∈ Z

∧ sin(θ) = 1 ⇒ θ =
π

2
+ 2πn, n ∈ Z

sin(θ) sin(φ) != sin(qz + ϕz(t)) ⇒ φ = qz + ϕz(t) + 2πm, m ∈ Z

∧ sin(θ) = 1 ⇒ θ =
π

2
+ 2πn, n ∈ Z

Thus,

ESTT[Ω̂] =
∫
V
d~x

~
e

(
~j · ∇

)
(qz + ϕz(t))

=
∫
V
d~x

~
e
jz q =

∫
V
d~x

~
e
~j · q̂ with q̂ = (0, 0, 1)T . (32)

Therefore, one is tempted to believe that ESTT for a helix is given by

ESTT[Ω̂] =
∫
V
d~x

~
e
~j · ~q, (33)

and that this term produces a contribution to the derivative of the action functional

with respect to the q-vector.
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9. Variation Principle

However, we have not proven so far that the last step taken in Eq. (32) is correct

for all helical directions, but at least we found one helical direction where ESTT

is given by Eq. (33). In the following, we will argue that such a term is rather

non-physical. To see this, let us consider the helix described above and perform a

rotation of 180◦ around the x-axis. Under this rotation q̂, x̂, ŷ change as

q̂ → −q̂ ∧ x̂→ x̂ ∧ ŷ → −ŷ

and we get

Ω̂rotated(~x, t) = cos [−q(z + ϕz(t))] x̂+ sin [−q(z + ϕz(t))] (−ŷ) = Ω̂(~x, t),

while the helix remains unaffected. Hence, every term which describes the physical

properties of the helix should be invariant under this rotation. However the “energy”

ESTT changes the sign under this rotation.

This simple and straightforward example shows that first calculating the action

and then taking the derivative with respect to the variables may lead to errors in

the equation of motion. The origin of these additional terms is somehow the choice

of the action, viz. by taking the derivative with respect to uj we get the additional

term

−
∫
V
d~y (~vs · ∇)

(
∂Ωk(~y, s)
∂uj

Ak[Ω̂(~y, s)]
)

which we first denoted a as boundary term. However, from this example we may

infer that this term produces bulk contributions, too. To see this, one only has to

choose for uj a component of the q vector. Then ∂Ωk(~y, s)/∂qj produces a term

linear in rj on which the derivative can act.

Thus, the correct way of deriving the equations of motion is the way described

in Sec. 5.3.
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Summary

In this thesis, we have investigated the influence of an electric current on the different

magnetic phases of manganese silicide (MnSi). In the appropriate temperature and

magnetic field ranges, MnSi develops helical or conical order. Moreover, it exhibits

a topologically nontrivial phase, the so-called “A-phase”, which is well described by

a superposition of three helices and a uniform magnetic component. The existence

of this phase is detected by neutron scattering and may be explained within the

Ginzburg-Landau framework of the free energy.

To describe the dynamic evolution of the local magnetic moments of MnSi, we

have focused on the Landau-Lifshitz-Gilbert equation. Using this equation as an

ansatz for a general magnetic structure, we have obtained the equations of motion

for a finite number of variables describing this structure.

By applying this method to the helical phase and the A-phase we have shown

that a current leads to a drift of the magnetic configuration. While the magnetic

texture is not altered by the current in the helical phase, it leads to a rotation and a

tilting of the magnetic structure in the A-phase. Both modifications of the magnetic

texture in the A-phase are linear in the strength of the current. To explain this

rotation, we have considered Gaussian fluctuations around the minimum to stabilize

the A-phase. Moreover, we have taken different anisotropy terms into account which

distort the crystal lattice under the influence of a current.

Altogether, we have proposed a theory that is able to explain the current-induced

distortion of the A-phase observed in neutron scattering experiments. Furthermore,

by means of the topological Hall effect the A-phase has been identified as a lattice

of anti-Skyrmions.

Apart from MnSi, there exists a large number of materials that share the same

crystal structure B20 and similar physical properties like chiral itinerant magnetism

with MnSi, e.g. CrSi, FeGe, FeSi and CoSi. Although FeSi is a semiconductor and

CoSi is a diamagnetic semimetal, the doped material FexCo1−xSi is a metal that

possesses not only helical order (observed in the concentration range 0.2 < x < 0.95),

but also the A-phase which has been detected experimentally in FexCo1−xSi for

x = 0.2 and x = 0.25.

Finally, it seems that the A-phase of MnSi is not only a special feature which is

unique to this compound, but that a lot of the displayed formalism is also applicable

to other chiral magnetic materials as well.
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Appendix

A Calculation of the Equations of Motion for the Helix

As shown in Sec. 6, a parametrization of the helix is given by

Ω̂(~r, t) = Ω̂(q̂(t), ~r−~ϕ(t),m(t)) =
1√

1 +m2

(
cos(q̂·(~r−~ϕ))n̂1+sin(q̂·(~r−~ϕ))n̂2+mq̂

)
with qx, qy, m and ~ϕ as dynamical variables. Here, we want to calculate the equations

of motion for the helix, i.e.

−
∫
V
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂− 1

M

∂F

∂uj

=
∫
V
d~r · αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂Ω̂

∂uj

with u1 = m, u2 = ~ϕ, u3 = qx and u4 = qy. The explicit choice of the q-vector,

of the perpendicular vectors n̂1 and n̂2 and their derivatives are shown on the next

page. Furthermore, we introduce the following abbrevations:

Buj :=
∫
V
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂,

Duj :=
∫
V
d~r · αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂Ω̂

∂uj
,

ε := q̂ · (~r − ~ϕ) = qx(rx − ϕx) + qy(ry − ϕy) +
√

1− q2
x − q2

y (rz − ϕz).

The motivation for B and D are taken from Sec. 9, where “B” denotes the Berry

phase term and “D” the dissipation term.

Substitutuing the ansatz into B and D for different uj , one obtains terms,

amongst others, that are linear in x, y or z. These occur by taking a derivative

with respect to qx or qy. Moreover, one gets terms that contains a remaining cos(ε)

or sin(ε). Assuming a large volume V centered in the origin, such terms cancel for

a soft boundary. This can be seen from the following examples:∫ ∞
−∞

dx (c+ ax) · e−(x/L)2 = cL
√
π∫ ∞

−∞
dx cos(kx+ p) · (c+ ax) · e−(x/L)2

= −1
2
e−1/4 k2L2 ·

[
L
√
π
(
−2c cos(p) + akL2 sin(p)

)]
−→
L→∞

0∫ ∞
−∞

dx cos2(kx+ p) · (c+ ax) · e−(x/L)2

=
1
2
√
πcL+

1
4
√
π e−k

2L2−2ip L
(
c(1 + e4ip) + i akL2(−1 + e4ip)

)
−→
L→∞

1
2
√
πcL.
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A. Calculation of the Equations of Motion for the Helix

In the representation of Dqx and Dqy there exist terms that are quadratic in the

components of ~r. In these terms, the integrals over cosine and sine are effectively

averaged to 1/2. Moreover, we profit from q̂, n̂1 and n̂2 being unit vectors as, for

example, |q| = 1 implies

0 =
d

dt
(q̂ · q̂) = 2q̂ · ˙̂q ⇒ q̂ · ˙̂q = 0.

Using these simplifications we obtain the following relations for Buj and Duj (see

the next page).

Here, C1 and C2 are defined by

C1(m, ~ϕ, qx, qy) =
−(1− q2

y)
2 + 2m2(−1 + q2

x)(1− q2
y)

2 − q2
x(−1 + 2q2

y + q4
y)

2(1− q2
y)2(−1 + q2

x + q2
y)

,

C2(m, ~ϕ, qx, qy) = −
qxq

2
y√

1− q2
x − q2

y(1− q2
y)
·

(
ϕx −

qxϕz√
1− q2

x − q2
y

)

+
qxqy(1 + q2

y + 2m2(1− q2
y))

2(1− q2
y)(1− q2

x − q2
y)

.
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Bm =
∫
V
d~r

(
1

1 +m2

)3/2

·

{(
q̂ · ( ~̇ϕ− ~vs)

)
− q̇x

(−√1− q2
y (n̂1 · ~ϕ) + qy√

1− q2
x − q2

y

)
+ q̇y

(
ϕy −

qyϕz√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− q2
y)

)}
,

B~ϕ = −
∫
V
d~r

(
1

1 +m2

)3/2

ṁ · q̂,

Bqx = −
∫
V
d~r

{(
1

1 +m2

)3/2

ṁ ·

(
ϕx −

qx · ϕz√
1− q2

x − q2
y

− qy√
1− q2

x − q2
y

)
− m√

1 +m2
· q̇y√

1− q2
x − q2

y

}
,

Bqy = −
∫
V
d~r

{(
1

1 +m2

)3/2

ṁ ·

(
ϕy −

qy · ϕz√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− q2
y)

)
+

m√
1 +m2

· q̇x√
1− q2

x − q2
y

}
,

Dm =
∫
V
d~r αG

ṁ

(1 +m2)2
,

D~ϕ =
∫
V
d~r

{
− αG

1 +m2
q̂

(
− ˙̂q · ~ϕ− q̂ · ~̇ϕ+

β

α
~vs · q̂ +

qy√
1− q2

x + q2
y

q̇x −
qxq

2
y√

1− q2
x + q2

y(1− q2
y)
q̇y

)}
,

Dqx =
∫
V
d~r

αG
1 +m2

{
q̇xr

2
x +

qx · (qxq̇x + qy q̇y)
1− q2

x − q2
y

r2
z + q̇yrxry −

(2qxq̇x + qy q̇y)rxrz√
1− q2

x − q2
y

− qxq̇yryrz√
1− q2

x − q2
y

+

[
˙̂q · ~ϕ+

(
~̇ϕ− β

α
~vs

)
· q̂ − qy√

1− q2
x − q2

y

·
(
qxqy

1− q2
y

q̇y + q̇x

)]
·

(
ϕx −

qx · ϕz√
1− q2

x − q2
y

)}
,

Dqy =
∫
V
d~r

αG
1 +m2

{
q̇yr

2
y +

qy(qxq̇x + qy q̇y)
1− q2

x − q2
y

r2
z + q̇xrxry −

q̇xqyrxrz√
1− q2

x − q2
y

− qxq̇x + 2qy q̇y√
1− q2

x − q2
y

ryrz −
qxq

2
y√

1− q2
x − q2

y(1− qy)

(
~̇ϕ− β

α
~vs

)
· q̂

+

[
˙̂q · ~ϕ+

(
~̇ϕ− β

α
~vs

)
· q̂ − qy√

1− q2
x − q2

y

·
(

2qxqy
1− q2

y

q̇y + q̇x

)]
·

(
ϕy − ϕz

qy√
1− q2

x − q2
y

)
+ C1(m, ~ϕ, qx, qy)q̇y + C2(m, ~ϕ, qx, qy)q̇x

}
.

61



A. Calculation of the Equations of Motion for the Helix

For the free energy functional up to quadratic order we get in units in which

|~q| = q = 1, i.e. J = D

F2[ ~M ] =
∫
V
d~rM2

(
r0 − J

1
1 +m2

)
with the following derivatives:

∂F2

∂~ϕ
= 0,

∂F2

∂qx
=
∂F2

∂qy
= 0 and

∂F2

∂m
=
∫
V
d~rM2J

2m
(1 +m2)2

.

This leads to the following four equations of motion:

−Bm −
∂F

∂m
= Dm, (34a)

−B~ϕ −
∂F

∂~ϕ
= D~ϕ, (34b)

−Bqx −
∂F

∂qx
= Dqx , (34c)

−Bqy −
∂F

∂qy
= Dqy . (34d)

These are four linear, coupled differential equations of first order in time. However,

they are too complicated to solve them analytically.

To estimate if the current influences the direction vector of the helix, it suffices to

consider the “static” case, where the q-vector and the uniform magnetic component

are constant in time, i.e. q̇x = q̇y = ṁ = 0. The above complicated terms reduce to:

Bm =
∫
V
d~r

(
1

1 +m2

)3/2

·
(
q̂ · ( ~̇ϕ− ~vs)

)
,

B~ϕ = 0, Bqx = 0, Bqy = 0,

and

Dm = 0,

D~ϕ = −
∫
V
d~r

αG
1 +m2

q̂ ·
[
q̂ ·
(
β

α
~vs − ~̇ϕ

)]
,

Dqx =
∫
V
d~r

αG
1 +m2

[(
~̇ϕ− β

α
~vs

)
· q̂
)
·

(
ϕx −

qx · ϕz√
1− q2

x − q2
y

)
,

Dqy =
∫
V
d~r

αG
1 +m2

[(
~̇ϕ− β

α
~vs

)
· q̂
]
·

(
ϕy −

ϕzqy√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− qy)

)
.

Obviously, the Berry phase terms Bqx and Bqy vanish and therefore do not contribute

to the corresponding equation of motion. Finally, these are given by∫
V
d~r

(
1

1 +m2

)3/2

·
(
− m√

1 +m2
· 2JM + q̂ · (~vs − ~̇ϕ)

)
= 0 (35a)
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A. Calculation of the Equations of Motion for the Helix

and

0 = −
∫
V
d~r

αG
1 +m2

q̂ ·
[
q̂ ·
(
β

α
~vs − ~̇ϕ

)]
, (35b)

0 =
∫
V
d~r

αG
1 +m2

[(
~̇ϕ− β

α
~vs

)
· q̂
]
·

(
ϕx −

qx · ϕz√
1− q2

x − q2
y

)
, (35c)

0 =
∫
V
d~r

αG
1 +m2

[(
~̇ϕ− β

α
~vs

)
· q̂
]
·

(
ϕy −

ϕzqy√
1− q2

x − q2
y

−
qxq

2
y√

1− q2
x − q2

y(1− qy)

)
.

(35d)

leading to Eqs. (11a) – (11d) in Sec. 6.3 of the main text.
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B Derivation of the Vector Potential

A possible parametrization of the vector potential ~A is given by (see e.g. [50])

~A(r, θ, φ) =
1− cos θ
r sin θ

êφ with êφ = (− sinφ, cosφ, 0)T .

To substantiate this, we have to consider the vector potential ~A corresponding to Ω̂.

It is implicitly defined by the relation

∇Ω̂ × ~A = Ω̂, (36)

where ∇Ω̂ =
(

∂
∂Ωx

, ∂
∂Ωy

, ∂
∂Ωz

)T . Such a vector potential cannot be defined in R3

without singularities. This can be seen by integrating Eq. (36) over the surface ∂V

of a volume V yielding:

4π =
∫
∂V

Ω̂ d~σ =
∫
∂V
∇Ω̂ × ~Ad~σ =

∫
V

div∇Ω̂ × ~Ad~x.

If ~A does not have singularities, then div(rot ~A) is zero. A technical problem to

use Eq. (36) is that Ω̂ is normalized. To calculate the derivative properly, one has

to implement this condition into the derivative. A simpler way is to use the more

general equation for a magnetic monopole which is not normalized:

∇× ~A =
1
r2
êr,

and then to apply the result for the normalized case. In spherical coordinates, this

gives

∇Ω̂ × ~A =
[

1
r sin θ

(
∂

∂θ
(Aθ sin θ)− ∂Aθ

∂φ

)]
êr

+
[

1
r sin θ

∂Ar
∂φ
− 1
r

∂

∂r
(rAφ)

]
êθ +

[
1
r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)]
êφ.

Thus, we have three partial differential equations for the variables r, θ and φ:

1
r2

=
1

r sin θ

(
∂

∂θ
(Aθ sin θ)− ∂Aθ

∂φ

)
, (37a)

0 =
1

r sin θ
∂Ar
∂φ
− 1
r

∂

∂r
(rAφ), (37b)

0 =
1
r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
. (37c)

Because of the gauge freedom of electrodynamics we may require ~A ⊥ êr such that

Ar is zero. From Eqs. (37b) and (37c) it follows that ∂Aφ/∂r = −1/r Aφ and that

∂Aθ/∂r = −1/r Aθ. These equations are solved by Aφ, Aθ ∝ 1/r or 0, but Aφ and

Aθ are still coupled via Eq. (37a). In the case, where Aθ = 0, then Aφ has to fulfill

1
r

sin θ =
∂

∂θ
(Aφ sin θ),

∂

∂θ
Aφ =

1
r
−Aθ

cos θ
sin θ

.
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B. Derivation of the Vector Potential

The solution to this inhomogeneous differential equation reads

~A =
C − cos θ
r sin θ

êφ,

where C is an integration constant that corresponds to the choice of the particular

gauge. For C = 1 and r = |Ω̂| we finally obtain above formula.
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C Explicit Calculation of δA[Ω̂(~x, t)]/δΩj(~y, t
′)

The action functional A[Ω̂] separates into three terms A(t)[Ω̂], A(∇)[Ω̂] and A(F )[Ω̂]

as defined in Eq. (24). To calculate the variation δA[Ω̂(~x, t)]/δΩj(~y, t′), we will

calculate the terms explicitly.

Let us start by considering A(t)[Ω̂(~x, t)]. Its variational derivative is by definition

given by

δA(t)[Ω̂(~x, t)]
δΩj(~y, t′)

= lim
ε→0

1
ε

(
A(t)[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]−A(t)[Ω̂(~x, t)]

)

with a variation in the direction of êj . To ensure that Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′) is

to linear order in ε normalized, one has to choose êj ⊥ Ω̂. We thus get:

δA(t)[Ω̂(~x, t)]
δΩ̂j(~y, t′)

= lim
ε→0

1
ε

[∫
V
d~x

∫
dt

(
d

dt

(
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

)
k

·Ak
[
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

]
− dΩk(~x, t)

dt
·Ak[Ω̂(~x, t)]

)]
= lim

ε→0

1
ε

[∫
V
d~x

∫
dt

(
dΩk(~x, t)

dt

(
Ak

[
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

]
−Ak[Ω̂(~x, t)]

)
+ε δjk

dδ(~x− ~y, t− t′)
dt

Ak

[
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

])]
=
∫
V
d~x

∫
dt
dΩk(~x, t)

dt
lim
ε→0

1
ε

(
Ak

[
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

]
−Ak[Ω̂(~x, t)]

)
+ lim
ε→0

∫
V
d~x

∫
dt

(
dδ(~x− ~y, t− t′)

dt
Aj

[
Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)

])
=
∫
V
d~x

∫
dt
dΩk(~x, t)

dt
δ(~x− ~y, t− t′) · ∂Ak[Ω̂(~x, t)]

∂Ωj
+
dδ(~x− ~y, t− t′)

dt
Aj [Ω̂(~x, t)]

p.i.
=

(
dΩk(~x, t)

dt
· ∂Ak[Ω̂(~x, t)]

∂Ωj

∣∣∣∣
~x=~y,t=t′

−
∫
V
d~x

∫
dtδ(~x− ~y, t− t′)dAj [Ω̂(~x, t)]

dt

)
+
(
Aj [Ω̂(~y, t2)]δ(t2 − t′)−Aj [Ω̂(~y, t1)]δ(t1 − t′)

)
=: MT(t)

j + BT(t)
j .

Here, t1 and t2 are the limits of the time integral. The abbrevation p.i. denotes

partial integration, “MT” denotes the main term, while “BT” denotes the boundary

term. BT(t)
j is zero because of the usual Lagrange formalism. We only allow for

variations which leave the initial and final time configurations fixed. The main term
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C. Explicit Calculation of δA[Ω̂(~x, t)]/δΩj(~y, t′)

MT(t)
j can be simplified further as follows:

MT(t)
j =

dΩk(~x, t)
dt

· ∂Ak[Ω̂(~x, t)]
∂Ωj

∣∣∣∣
~x=~y,t=t′

−
∫
V
d~x

∫
dt δ(~x− ~y, t− t′)dAj [Ω̂(~x, t)]

dt

=
(
dΩk(~x, t)

dt
· ∂Ak[Ω̂(~x, t)]

∂Ωj
− dAj [Ω̂(~x, t)]

dt

)∣∣∣∣
~x=~y,t=t′

=
dΩk(~x, t)

dt
·
(
∂Ak[Ω̂(~x, t)]

∂Ωj
− ∂Aj [Ω̂(~x, t)]

∂Ωk

)∣∣∣∣
~x=~y,t=t′

=
dΩk(~x, t)

dt
· (δjaδkb − δjbδka)

∂Ab[Ω̂(~x, t)]
∂Ω̂a

∣∣∣∣
~x=~y,t=t′

=:
dΩk(~x, t)

dt
εjkmεmab

∂Ab[Ω̂(~x, t)]
∂Ω̂a

∣∣∣∣
~x=~y,t=t′

=
dΩk(~x, t)

dt
εjkm

(
∇Ω̂ × ~A[Ω̂(~x, t)]

)
m

∣∣∣∣
~x=~y,t=t′

= εjkm
dΩk(~x, t)

dt
Ω(~x, t)m

∣∣∣∣
~x=~y,t=t′

=
(
dΩ̂(~y, t′)
dt′

× Ω̂(~y, t′)
)
j

,

where ∇Ω̂ :=
(

∂
∂Ω̂x

, ∂
∂Ω̂y

, ∂
∂Ω̂z

)T , and we have used the relation ∇Ω̂× ~A = Ω̂. Finally,

δA(t)[Ω̂(~x, t)]
δΩ̂j(~y, t′)

=
(
dΩ̂(~y, t′)
dt′

× Ω̂(~y, t′)
)
j

.

Now let us focus on A(∇)[Ω̂(~x, t)]. By definition we obtain:

δA(∇)[Ω̂(~x, t)]
δΩ̂j(~y, t′)

= lim
ε→0

1
ε

(
A(∇)[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]−A(∇)[Ω̂(~x, t)]

)
with êj ⊥ Ω̂ as in the case of A(t). From this follows:

δA(∇)[Ω̂(~x, t)]
δΩ̂j(~y, t′)

= lim
ε→0

1
ε

[∫
V
d~x

∫
dt
(

(~vs · ∇)
(

Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)
)

·Ak[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]− (~vs · ∇)Ωk(~x, t) ·Ak[Ω̂(~x, t)]
)]

= lim
ε→0

1
ε

[∫
V
d~x

∫
dt
(

(~vs · ∇)Ωk(~x, t)
(
Ak[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]−Ak[Ω̂(~x, t)]

)
+ε δjk(~vs · ∇)δ(~x− ~y, t− t′)Ak[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]

)]
=
∫
V
d~x

∫
dt (~vs · ∇)Ωk(~x, t) lim

ε→0

1
ε

(
Ak[Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]−Ak[Ω̂(~x, t)]

)
+ lim
ε→0

∫
V
d~x

∫
dt
(

(~vs · ∇)δ(~x− ~y, t− t′)Aj [Ω̂(~x, t) + ε êjδ(~x− ~y, t− t′)]
)
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C. Explicit Calculation of δA[Ω̂(~x, t)]/δΩj(~y, t′)

=
∫
V
d~x

∫
dt (~vs · ∇)Ωk(~x, t)δ(~x− ~y, t− t′) ·

∂Ak[Ω̂(~x, t)]
∂Ωj

+
∫
V
d~x

∫
dt (~vs · ∇)δ(~x− ~y, t− t′)Aj [Ω̂(~x, t)]

p.i.
=
[
(~vs · ∇)Ωk(~x, t) ·

∂Ak[Ω̂(~x, t)]
∂Ωj

∣∣∣∣
~x=~y,t=t′

−
∫
V
d~x

∫
dt δ(~x− ~y, t− t′)(~vs · ∇)Aj [Ω̂(~x, t)]

]
+
∫
dt

∫
S(V )

dσ(x) δ(~x− ~y, t− t′)Aj [Ω̂(~x, t)](~vs · ~ν)

=: MT(∇)
j + BT(∇)

j .

Here, dσ(x) is the area element, and ~ν is the outer normal unit vector on the surface

S(V ) of the volume V , i.e. d~σ(x) = ~νdσ(x). Note that the superscript x implies the

integration over ~x, but not ~y.

Similar to the calculation for A(t) we get:

MT(∇)
j = [(~vs · ∇)Ωk(~x, t)] ·

∂Ak[Ω̂(~x, t)]
∂Ωj

∣∣∣∣
~x=~y,t=t′

−
∫
V
d~x

∫
dt δ(~x− ~y, t− t′)(~vs cdot∇)Aj [Ω̂(~x, t)]

=
(

[(~vs · ∇)Ωk(~x, t)] ·
∂Ak[Ω̂(~x, t)]

∂Ωj
− (~vs · ∇)Aj [Ω̂(~x, t)]

)∣∣∣∣
~x=~y,t=t′

= [(~vs · ∇)Ωk(~x, t)] ·
(
∂Ak[Ω̂(~x, t)]

∂Ωj
− ∂Aj [Ω̂(~x, t)]

∂Ωk

)∣∣∣∣
~x=~y,t=t′

= [(~vs · ∇)Ωk(~x, t)] · (δjaδkb − δjbδka)
∂Ab[Ω̂(~x, t)]

∂Ω̂a

∣∣∣∣
~x=~y,t=t′

= [(~vs · ∇)Ωk(~x, t)] · εjkmεmab
∂Ab[Ω̂(~x, t)]

∂Ω̂a

∣∣∣∣
~x=~y,t=t′

= [(~vs · ∇)Ωk(~x, t)] · εjkm
(
∇Ω̂ × ~A[Ω̂(~x, t)]

)
m

∣∣∣∣
~x=~y,t=t′

= εjkm [(~vs · ∇)Ωk(~x, t)] Ω(~x, t)m

∣∣∣∣
~x=~y,t=t′

=
([

(~vs · ∇)Ω̂(~y, t′)
]
× Ω̂(~y, t′)

)
j
.

In the boundary term, we can perform the time integration, and we are left with

BT(∇)
j =

∫
dt

∫
S(V )

dσ(x) δ(~x− ~y, t− t′)Aj [Ω̂(~x, t)](~vs · ~ν)

=
∫
S(V )

dσ(x) δ(~x− ~y)Aj [Ω̂(~x, t′)](~vs · ~ν).
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C. Explicit Calculation of δA[Ω̂(~x, t)]/δΩj(~y, t′)

Finally we get:

δA(∇)[Ω̂(~x, t)]
δΩj(~y, t′)

=
([

(~vs · ∇)Ω̂(~y, t′)
]
× Ω̂(~y, t′)

)
j

+
∫
S(V )

dσ(x) δ(~x− ~y)Aj [Ω̂(~x, t′)](~vs · ~ν). (38)

Now we can insert the results obtained above into Eq. (29) of Sec. 9.1 of the main

text.
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D Numerical Results of the Calculations for the

A-Phase

We have performed the numerical calculations with t = −0.8 that describes the

distance to the phase transition. For the magnetic field parallel to 〈110〉 we set
~B = 1√

2

{
1
2

√
−2t, 1

2

√
−2t, 0

}T . For the magnetic field parallel to 〈110〉 we set
~B =

{
0, 0, 1

2

√
−2t

}T . In the anisotropic case, we have chosen δ1 = 0.012 and

δ2 = 0.001, while in the isotropic case we set δ1 = δ2 = 0. Moreover, we set αG = 1

and β = 2.

In the abscence of a current, we find the ground state solutions for the different

cases which are given in Table 1 on the next page.

The numerical data for the case with applied current is given in Table 2 on the

next page. In the case |~vs| = v = 0, we get the ground state values. Thus, we only

present the changes linear in the prefactor v, i.e. ∆uj/v. However, we have to keep

in mind that we have calculated the data using rescaled units, such that the scalar

v is not the physical spin-polarized velocity. It rather contains additional factors of

Q, J and U . Finally, note that ~vs ‖ ~q2 implies that the current is applied in the

direction of the corresponding ~q2 vector that adjusts without a current.

To analyze how the first q vector changes, we define the angle ∆φ between ~q1

and ~q1 + ∆~q1 as

cos(∆φ) =
~q1 · (~q1 + ∆~q1)
|~q1| |~q1 + ∆~q1|

To be consistent we consider ∆φ only up to linear oder in v. These data are given

in Table 3. At first glance it seems, that all three configurations leads to a similar

result, but this is not the case. In the isotropic case, the momentum vectors only get

a component in the direction of the magnetic field, i.e. in this case ∆φ only describes

a tilt of the plane of the momentum vectors. In the second column, the situation

is, however, different. We still observe a tilt, but additionally a rotation of the

momentum vectors, which is shown in Fig. 14. Here, we have plotted the different

momentum vectors and their corresponding planes for v = 0.02. The black lines

and the corresponding yellow triangle belong to the ground state values, whereas

the blue lines with the red triangle to the current distorted values.

The case ~B ‖ 〈100〉 is similar to the isotropic case, i.e. there is no real rotation,

but only a tilt.
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N
um

erical
R

esults
of

the
C

alculations
for

the
A

-P
hase

isotropic anisotropic anisotropic
~B ‖ 〈110〉 ~B ‖ 〈110〉 ~B ‖ 〈001〉

~q1 {−0.0025, 0.0025,−0.9992}T {−0.3530, 0.3524,−0.8618}T {0.4980, 0.8621, 0.0000}T

~q2 {−0.6107, 0.6107, 0.5026}T {−0.3530, 0.3524, 0.8618}T {−0.9959, 0.0000, 0.0000}T

~q3 {0.6131,−0.6131, 0.4966}T {0.7059,−0.7049, 0.0000}T {0.4980,−0.8621, 0.0000}T

~mh {0.2050, 0.2050,−0.0000}T {0.2052, 0.2052, 0.0000}T {0.0000, 0.0000, 0.2903}T

Table 1: The momentum vectors and the uniform magnetization in the abscence of a current.

isotropic δ1 = δ2 = 0 anisotropic anisotropic
~B ‖ 〈110〉 ~B ‖ 〈110〉 ~B ‖ 〈001〉
~vs ‖ ~q2 ~vs ‖ ~q2 ~vs ‖ ~q2

∆~q1/v {−0.0928,−0.0928, 0.0000}T {−0.1640, 0.0309, 0.0796}T {−0.0097, 0.0056,−0.1322}T

∆~q2/v {−1.1384,−1.1384, 0.0000}T {−1.023,−1.2193, 0.0794}T {0.0000,−0.0112,−1.6570}T

∆~q3/v {1.2312, 1.2312, 0.0000}T {1.1817, 1.1884,−0.1590}T {0.0097, 0.0056, 1.7892}T

∆~mh/v {−0.1572, 0.1572,−0.0143}T {−0.1390, 0.1390, 0.0979}T {−0.1865, 0.1251, 0.0000}T

Table 2: The current induced modification of the momentum vectors and the uniform magnetization.

isotropic δ1 = δ2 = 0 anisotropic anisotropic
~B ‖ 〈110〉 ~B ‖ 〈110〉 ~B ‖ 〈001〉
~vs ‖ ~q2 ~vs ‖ ~q2 ~vs ‖ ~q2

∆φ/v 0.1313 0.1856 0.1332

Table 3: Angle between ~q1 and ~q1 + ∆~q1.
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D. Numerical Results of the Calculations for the A-Phase
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Figure 14: Different planes of the q-vectors for v = 0.08; black lines are the ground

state values of the q-vectors that lie in the yellow area, and the blue lines represent

the current distorted values that lie in the red area.

To determine how the prefactors depend on J , U and Q we have to consider the

rescaling. Note, that we have rescaled the free energy in the following way:

~̃r = Q~r ⇒ ~r = 1/Q ~̃r, ∇ = Q∇̃

~̃M = [U/(JQ2)]1/2 ~M ⇒ ~M = [(JQ2)/U ]1/2 ~̃M

~̃B = [U/(JQ2)3]1/2 ~B

The same scaling should be applied to the Berry phase and the dissipation term in

the LLG equation∫
V
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ (~vs · ∇)

)
Ω̂ +

1

| ~M |
∂F

∂uj

= −
∫
V
d~r · αG

(
d

dt
+

β

αG
(~vs · ∇)

)
Ω̂ · ∂Ω̂

∂uj
. (39)

Let us define again

B :=
∫
d~r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+ ~vs · ∇

)
Ω̂

=
1
Q3

∫
d~̃r

(
Ω̂× ∂Ω̂

∂uj

)
·
(
d

dt
+Q~vs · ∇̃

)
Ω̂ =:

1
Q3

B̃(Q~vs),

and

D :=
∫
d~r αG

∂Ω̂
∂uj
·
(
d

dt
+

β

αG
~vs · ∇

)
Ω̂

=
1
Q3

αG

∫
d~̃r

∂Ω̂
∂uj
·
(
d

dt
+

β

αG
Q~vs · ∇̃

)
Ω̂ =:

1
Q3

D̃(Q~vs).

73



D. Numerical Results of the Calculations for the A-Phase

Since the prefactor of the free energy functional is J2Q/U , and | ~M | scales

like [(JQ2)/U ]1/2, the fluctuation matrix M scales like J2Q/U · [(JQ2)/U ]−1/2 =

[J3/U ]1/2. Thus, M−1 = [U/J3]1/2M̃−1, and

∆u =

√
U

J3
· 1
Q3

(
M̃
)−1
·
(
B̃(Q~vs) + D̃(Q~vs)

)
.

Since (
M̃
)−1
·
(
B̃(Q~vs) + D̃(Q~vs)

)
∼ (Q · |~vs|) · αG

(
1− β

αG

)
δ1

δ2

we finally get

∆u =

√
U

J3
· 1
Q3
|~vs| · αG

(
1− β

αG

)
δ1

δ2
· f(t, B̂, v̂s).

The function f depends on the distance to the phase transition, and the direction

of the magnetic field, as well as the direction of the current. For the values chosen

above f is of the order of 10−2.
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Deutsche Zusammenfassung

Die vorliegende Diplomarbeit befasst sich mit dem Einfluss von elektrischen Strömen

auf magnetische Materialien. Verschiedene Spintronik-Experimente deuten darauf-

hin, dass sich mittels Spin-Transfer-Drehmomenten magnetische Strukturen durch

elektrische Ströme beeinflussen lassen.

Wir konzentrieren uns in dieser Arbeit auf magnetische Materialien ohne Inversi-

onssymmetrie, in denen eine schwache Spin-Bahnkopplung zur Ausbildung von ma-

gnetischen Helizes führt. Helimagnetische Strukturen tauchen in einer Vielzahl von

Materialien auf, z.B in MnSi, FexCo1−xSi, CrSi und FeGe.

Wir betrachten insbesondere den itineranten Helimagneten MnSi, der zusätzlich zur

helikalen und zur konischen Phase noch eine topologisch stabile Phase, die sogenann-

te A-Phase besitzt. Diese lässt sich, wie seit Kurzem bekannt ist, approximativ sehr

gut durch eine Superposition von drei Helizes und einer uniformen magnetischen

Komponente beschreiben.

Zunächst fassen wir einige allgemeine Eigenschaften von MnSi zusammen. Insbe-

sondere stellen wir das magnetische Phasendiagramm von MnSi dar, in dem die

Temperatur gegen das äußere angeleget Magnetfeld aufgetragen ist. Anschließend

schilder wir den experimentellen Nachweis und die theoretischen Beschreibung der

magnetischen Phasen.

In den darauf folgenden Kapiteln diskutieren wir den Einfluss des Stromes auf die

verschiedenen magnetischen Konfigurationen. Technisch betrachtet ist unser An-

satzpunkt die Landau-Lifshitz-Gilbert Gleichung, die das reaktive und das dissipa-

tive Spin-Transfer-Drehmoment beinhaltet. Sie beschreibt die Dynamik der lokalen

Magnetisierung in Anwesenheit eines Stroms. Wir charakterisieren die verschiede-

nen magnetischen Strukturen durch zeitabhängige Parameter und bestimmen Be-

wegungsgleichungen für diese.

Unser Hauptergebnis ist, dass der Strom die Richtung der Helix unbeeinflusst lässt,

was ebenfalls im Experiment festgestellt wurde, aber dass der Strom einen Einfluss

auf die leicht anisotrope A-Phase hat. Aus den theoretischen Berechnungen ergibt

sich, dass die Anordnung der Richtungsvektoren der drei Helizes in der A-Phase

rotiert und kippt. Beide Effekte sind linear im spin-polarisierten Anteil des elektri-

schen Stroms. Es ist wahrscheinlich, dass die Theorie, die in dieser Diplomarbeit

präsentiert wird, in der Lage ist, die experimentell beobachtbare Veränderung der

Position der Richtungsvektoren der Helizes unter Stromeinfluss zu erklären.

Desweiteren schildern wir den topologischen Hall-Effekt, der ein charakteristisches
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Deutsche Zusammenfassung

Merkmal für magnetische Strukturen mit endlicher Skyrmiondichte ist. Mittels des

topologischen Hall-Effekts ließ sich die A-Phase als Anti-Skyrmion-Gitter identifi-

zieren.

Darüber hinaus betrachten wir noch einen Variationsansatz, aus dem sich die Landau-

Lifshitz-Gilbert Gleichung herleiten lässt. Innerhalb dieses Ansatzes wird die topolo-

gische Struktur aufgrund eines in der Wirkung auftauchenden Berry-Phasen-Terms

besonders deutlich.

Die magnetische Struktur der A-Phase wurde mittlerweile auch bei FexCo1−xSi für

x = 0.2 und x = 0.25 nachgewiesen. Dies lässt vermuten, dass die betrachtete

Theorie auch für andere chirale magnetische Materialien anwendbar ist.
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