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Roses are red, violets are blue,
particles can obey statistics

ranging continuously between Bose and Fermi
if the spatial dimension is two.

Abelian anyon
|ψ1, ψ2〉 = eiθ |ψ2, ψ1〉 , θ 6= 0, π

non-Abelian anyon
|ψ1, ψ2〉 = M |ψ2, ψ1〉 , M is a matrix



Abstract

In this thesis we investigate the existence of Majorana zero modes in ferromagnet-
superconductor heterostructures. A promising feature of these modes is the property
of non-abelian statistics. Such statistics of exchanging two quasiparticles is the key
ingredient to building a topological quantum computer which implements quantum er-
ror correction on a hardware level. At the moment there is no experimental technique
which shows unambiguously the existence of Majorana modes. Hence, the only way to
prove if the observed modes are the desired ones is to braid them and verify their non-
abelian statistics. Therefore, it is vital to find a system where the latter can be realized.
In order to analyse the considered systems, we diagonalize the corresponding Bogoliubov-
de Gennes Hamiltonian and self-consistently calculate the superconducting gap. Within
this method the energy of the system is minimized. Thereby, we obtain a stable solu-
tion, which makes it more probable to be found in an experimental setup.
As a main result, we find the existence of Majorana zero modes in skyrmion-vortex
pairs. Due to the drivability of the skyrmion and the attraction between a skyrmion
and a vortex, skyrmion-vortex pairs could be a way to actually braid the Majorana zero
modes. As a starting point, we prove that the used method fulfils the concepts derived
for the Kitaev Chain. In the course of this thesis, we expand the model to skyrmion-
vortex pairs. Finally, the generation of effective spin-orbit coupling by a skyrmion with
winding number two is an unstable solution in our method.
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1
Introduction

In today’s society computers are no longer expendable. We use them on a regular ba-
sis in our daily lives. But even more importantly, they push scientific and economic
progress by simplifying tasks that were impossible before. This is achieved by creating
large networks of computers that are linked via the internet. Being such an essential
resource, the aim is to speed up and increase the efficiency of these computers leading to
an enhancement of the whole network. For many years this acceleration, corresponding
to the number of transistors per unit area in an integrated circuit, increased exponen-
tially, which Gordon Moore pointed out in 1965 [1]. But this progress will inevitably
saturate if the transistors reach an atomic level.
One way to circumvent this problem is to use a computer which does not use classical
physics but quantum physics for information processing Richard Feynman formulated
this idea first in 1981 in the context of simulating a quantum mechanical problem with
quantum mechanics instead of classical physics [2]. This approach was not only in-
teresting from a scientific point of view but also from an economical one. The first
breakthrough was the quantum algorithm by Peter Shor in 1994 [3]. He showed that a
quantum computer is able to find the prime factor of a number in polynomial time. For
this reason, the common key encryption methods based on the RSA (Rivest-Shamir-
Adleman) algorithm is not safe anymore. Nevertheless, this requires an effective quan-
tum computer we do not have by now. Nowadays quantum computing is expected to
have a major impact in other fields i.e. neuronal networks, medicine, and even in logis-
tics.
Because of the variety of possible progresses using quantum computers and other re-
lated techniques, the EU has launched a European Flagship program [4] as a large-scale,
long-term research initiative, which focusses on four application areas: Quantum com-
munication, quantum simulation, quantum computing, and quantum metrology and
sensing. In addition, there is currently a competition driven race between academic
and industrial research centers, working on several different physical platforms such as
superconducting qubits (IBM [5] and Google [6]), ion traps [7], nitrogen-vacancy centers
[8], and quantum dots [9], just to name a few.
A very promising field within the area of quantum computation is the one of topological
quantum computation, which circumvents instablities by exploiting topological prop-
erties of condensed matter systems [10, 11]. In comparison to the approaches above,
quantum error-correction is implemented at the hardware level; thus, it is resilient
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to control errors and erroneous perturbations. This is reached by using quasiparticles,
called Anyons, which generalise the statistics observed for fermions and bosons. Certain
kinds of these anyons give rise to a decoherence-free subspace, in which the quantum
state can be evolved by moving anyons adiabatically around each other.
One possible kind of anyon are Majorana modes, which originally were observed as
solutions to the Dirac equation, in which a Majorana particle is equal to its own an-
tiparticle [12]. In 2001, Kitaev proposed the realization of Majorana modes in a p-wave
superconductor [13]. Consequently, the search for Majoranas in experimentally observ-
able systems began. In the pioneering work by Kane and Fu, topological insulators
were considered to achieve px ± ipy-wave-like pairing in a s-wave superconductor [14].
Later Sau et al. showed that it is sufficient to use a semiconductor instead [15]. In this
case, effective p-wave pairing is obtained either for strong spin orbit coupling combined
with a homogeneous magnetic field [16] or varying magnetic moments on top of the su-
perconductor [17]. For these two approaches there are already signatures of Majorana
modes shown in [18, 19] respectively. Following this trend, Yang et al. proposed that
skyrmions (topologically protected whirls in the magnetisation pattern of specific mate-
rials) could induce an effective p-wave pairing in a nearby s-wave superconductor [20].
Therefore one should, in principle, be able to observe Majorana modes localized at
the skyrmion. Since it has experimentally already been shown that skyrmions can be
displaced by means of electric currents [21, 22], it may therefore be possible to design
devices enabling braiding of majorana modes.

In this work, we first propose a system that is feasible for topological quantum com-
putation. Accordingly, in chapter 2 we will follow the history of this subject going
from a general toy model to an experimental platform. In chapter 3 we will de-
scribe the self-consistent field method to go beyond the pioneering work and study
ferromagnet-superconducting heterostructures by considering the superconducting pair-
ing self-consistently. Going on, in chapter 4 we show that the method is consistent with
state of the art results, such as localized Majorana modes in the Kitaev chain and in
superconducting vortices. Furthermore we find localized Majorana modes in skyrmion-
vortex pairs as a new result. Finally, we present the future steps planned for this project
in chapter 5.
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2
Non-Abelian Statistics and the Kitaev

Chain

In this chapter, we first introduce anyons and highlight which properties make them
desirable objects for quantum computation. This is followed by the introduction of the
Kitaev chain toy model, explaining the fundamental concepts of Majorana zero modes
being one realization of anyons that can be used for topological quantum computation.
Afterwards, we will show how we can engineer a system where the predictions of the
toy model can be observed. This chapter reproduces results from three references
[23, 24, 25], from where some of the plots are reproduced using the code shown in
A.2.

2.1. Non-Abelian Statistics

In mathematics, topology is the study of the global properties of manifolds that are
insensitive to local, smooth deformations (homeomorphisms). An example for this is
the topological equivalence between a doughnut and a coffee cup: Here the topological
invariant is the hole, which is present in both objects. Since we can smoothly deform
the coffee cup into the doughnut without loosing the hole throughout the process, it
is the same topological object. We can only change the topology of it by cutting the
doughnut in half or breaking the handle of the cup, which would not represent a smooth
deformation anymore.
The problem is that in current quantum computers small deformations can have strong
influences which makes them susceptible for local pertubations. Due to this, one must
take exceptional care to ensure that outside noise does not interfere and that the evo-
lution is precisely the desired one, to store and evolve a pure quantum state coherently.
Therefore, it would be desirable to store quantum information in topological properties
of matter and have quantum gates that are only dependent on the topology of the evo-
lutions. Such an approach would protect the evolution of the quantum state from local
pertubations.
This idea was first brought up by Kitaev in connection with surface codes for quantum
error correction [26]. He realized that certain codes could be viewed as spin lattice
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2.1. Non-Abelian Statistics

models, where the elementary excitations are anyons – quasiparticles with statistics
interpolating between those of bosons and fermions. For such excitations, the non-
contractible paths, which are topologically equivalent, will refer to the same quantum
gate. This motivated many people to study condensed matter systems, where such
excitations are possible.
The most important requirement which the system should fulfil is the necessary con-
dition which states that the exchange of two identical particles should not change the
local physics. In a three dimensional system there is only the possibility of fermions
and bosons. This means that the wavefunction describing the system of either type
gets -1 or +1 as a phase respectively by exchanging two particles. However, in a two
dimensional system there is a much bigger variety of statistics possible. In addition to
bosonic and fermionic exchange statistics, arbitrary phase factors, or even non-trivial
unitary evolutions, can be obtained when two particles are exchanged. This difference
can be explained in the following way: In three dimensions every path of a particle
encircling another particle can be contracted to one point. So a path λ1 that does not
encircle another particle can be continuously deformed to a path λ2 which encircles
another particle (the path can be deformed to pass behind the other particle), see fig-
ure 2.1.

3D 2D

Figure 2.1.: Exchange statistics in 2D vs. 3D. In 3D the path λ2 describing two particle
exchanges is continuously deformable to λ1 by taking it behind or front of the right-most
particle, and in turn λ1 is contractible to a point. Hence, all the paths have the same
topology and thus correspond to the same statistical quantum evolution. In 2D, however,
the paths λ2 and λ1 are topologically inequivalent since λ2 can not be deformed through
the right-most particle, while λ1 is still contractible to a point. Hence, the paths now
have different topology and different statistical quantum evolutions can be assigned to
each [10].

This results in the condition

3D : |Ψ(λ2)〉 = |Ψ(λ1)〉 = |Ψ(0)〉

As one particle encircles the other twice, the evolution of the system can be represented
by the exchange operator R such that |Ψ(λ2)〉 = R2 |Ψ(0)〉. The contractibility of the
loop requires that R2 = 1, which has only the solutions R = ±1 that corresponds
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2. Non-Abelian Statistics and the Kitaev Chain

to the exchange statistics of either bosons or fermions. Because of this the order of
the exchange does not matter and the statistics can be described by the permutation
group. This can not be done in a two dimensional system since the path λ2 can not be
continuously deformed (the path is not allowed to pass through the encircled particle)
to the contractable path λ1. This means that the final state |Ψ(λ2)〉 no longer needs to
equal the initial state |Ψ(λ1)〉 resulting in the condition

2D : |Ψ(λ2)〉 6= |Ψ(λ1)〉 = |Ψ(0)〉 .

Hence, the exchange operator R is no longer constrained to square to identity either.
Instead, it can be represented by a complex phase, or even a unitary matrix. In the first
case, the anyons are called Abelian anyons due to their exchange operators commuting,
while in the latter case the anyons are referred to as non-Abelian anyons. In comparison
to the three dimensional system, the statistics can be described by the braid group. In
conclusion, the statistics of two dimensional materials allow anyons to exist.
There are many works that show that the non-Abelian statistics of such anyons can
be recovered in condensed matter systems. Here we will focus on two works where the
anyons that are considered in these systems are called Majorana zero modes which we
will discuss in more detail throughout this thesis. One work considers the Kitaev chain,
explained in the following chapters, and shows that a T-shaped configuration of this
chain can obey non-Abelian statistics [16]. The other work shows that Majorana zero
modes in vortices of a px±ipy superconductor also recover non-Abelian statistics [27].

2.2. Kitaev Chain toy model

2.2.1. Spinless p-wave superconductor and Majorana fermions

We will start with the toy model of Kitaev. This model describes a spinless p-wave
superconductor given by the Hamiltonian and first introduced in Ref. [13]

Hchain = −µ
N∑
i=1

ni −
N−1∑
i=1

(tc†ici+1 −∆cici+1 + h.c.) (2.1)

where h.c. stands for hermitian conjugate, ci is the electron annihilation operator for site
i, and ni = c†ici is the associated number operator. The first term in this Hamiltonian
describes the internal energy of the system in terms of the particle number controlled
by the chemical potential µ. The second term describes how much energy is needed to
move an electron from one lattice site to the neighbouring lattice site. The third term
describes the p-wave pairing of two electrons on two neighbouring lattice sites with the
pairing strength ∆. A more detailed description of the different pairings can be found
in Appendix A.1. The pairing ∆ and the hopping t are assumed to be the same for
all sites. In the following, we will assume that the superconducting phase φ is zero,
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2.2. Kitaev Chain toy model

meaning that we can write ∆ = |∆| eiφ = |∆|.
In Kitaev’s work, he noticed that if one writes the electron creation and annihilation
operators as a superposition of two half electrons then different phases, namely a trivial
and a topological phase, can be seen in the toy model. By doing that, we will get

ci = 1
2(γi,1 + iγi,2)

c†i = 1
2(γi,1 − iγi,2),

where γi,α are Majorana operators [12] living on site i. They were found as a solution
to Dirac’s equation with the special property, that they are their own antiparticles. By
inverting this equation, we will receive

γi,1 = c†i + ci

γi,2 = i(c†i − ci)

where we can see that γi,j = γ†i,j . Using the fermionic anti-commutation relations for
the ci-fermions, one observes that the Majorana operators satisfy the anti-commutation
relation

{γi,α, γi,β} = 2δijδαβ.

From this, we see that γ2
i,α = 1 which means that there is no Pauli Principle for Majorana

fermions. In fact, we cannot even speak of occupancy of a Majorana mode, because if we
try to define a Majorana number operator we will always end with nMF

i = γ†i,αγi,α = 1
since they are their own antiparticles. Thus Majorana modes are in a sense always
empty as well as always filled and counting does not make any sense.
Now we can use these new operators in order to rewrite the Hamiltonian in equa-
tion (2.1) resulting in

Hchain = −1
2µ

N∑
i=1

iγi,1γi,2 −
1
2

N−1∑
i=1

i[(t−∆) γi,1γi+1,2 − (t+ ∆) γi,2γi+1,1]− µ

2 .
(2.2)

In the following, we will ignore the constant at the end since it will only shift our energy
spectrum without contributing to the physical understanding. This reformulation of the
Hamiltonian can be seen graphically in figure 2.2 (a). Now we will consider two special
cases:

First case
Here we will set µ 6= 0 and ∆ = t = 0, meaning that we only consider onsite contribu-
tions. Then the Hamiltonian in equation (2.2) can be written as

Hchain = − i2µ
N∑
i=1

γi,1γi,2 = −µ
N∑
i=1

c†ici. (2.3)
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2. Non-Abelian Statistics and the Kitaev Chain

Here the chain has a gapped bulk and no zero energy edge states. We also see that if
we pair two Majorana modes on the same site to a fermion, we will get the first term
of our Hamiltonian. The pairing can then be represented as seen in figure 2.2 (b).

Second case
In the other special case we set µ = 0 and ∆ = t 6= 0, meaning that we only consider
contributions connecting different sites, resulting in the following Hamiltonian

Hchain = −it
N−1∑
i=1

γi,2γi+1,1 (2.4)

Here the Majorana operators γN,2 and γ1,1 which are localized at the ends of the chain
are completely missing from (2.4). Again, we want to pair Majorana modes to build

(a)

(b) Trivial phase (µ > 2t)

(c) Topological phase (µ < 2t)

Figure 2.2.: Sketch of the Kitaev Chain. The big rectangles represent an electron and
the small blocks with a black circle in the middle represent the Majoranas so that one
Majorana is shown as one half of an electron. In (a) the notation for the chain is shown,
where γ is identified as a Majorana. In (b) the trivial pairing between the Majoranas is
shown according to (2.3). In (c) the nontrivial pairing is shown according to (2.4). Here
two unpaired Majoranas appear at the edges of the chain.
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2.2. Kitaev Chain toy model

fermions. In comparison to (2.3), we will now combine two Majorana operators on
neighbouring sites

c̃i = 1
2(γi+1,1 + iγi,2).

This pairing is demonstrated in figure 2.2 (c). In terms of these new fermions, equa-
tion (2.4) will now be

Hchain = 2t
N−1∑
i=1

c̃†i c̃i.

Thus, c̃i are the annihilation operators corresponding to the eigenstates, and the energy
cost of creating a c̃i fermion is 2t. These two Majorana operators can equivalently be
described by a single fermionic state with operator

c̃M = 1
2(γN,2 + iγ1,1).

This is a highly non-local state since γN,2 and γ1,1 are localized on opposite ends of
the chain. Furthermore, since this fermion operator is absent from the Hamiltonian
it means that it has zero energy and that the (zero-energy) ground state is two-fold
degenerate. It is either occupied or unoccupied.
These two examples show that there are at least two phases in the system. In the
trivial phase, two Majorana modes on the same site pair with each other, and in the
topological phase, two Majorana modes on different sites pair with each other, where
we get localized zero energy modes at the edges of the chain. From the energy of the
corresponding modes we see that whenever µ > 2t the trivial phase will win and when
µ < 2t the topological phase will win. In the next part, we will discuss how this will
manifest in the diagonalization of (2.1)

2.2.2. Bogoliubov-de Gennes Hamiltonian

To diagonalize equation (2.1), it is very useful to write the Hamiltonian according to
the Bogoliubov de Gennes formalism [28], meaning that our Hamiltonian will be given
by H = 1

2C
†HBdGC with C a column vector containing all creation and annihilation

operators, C = (c1, ..., cN , c
†
1, ..., c

†
N )T , where the first part of the vector corresponds

to holes, and the second part corresponds to electrons. The 2N × 2N matrix HBdG
can be written in a compact way using Pauli matrices τi in particle-hole space, and
denoting with |n〉 a column basis vector (0, ..., 1, ..., 0)T corresponding to the n-th site
of the chain. With these definitions the Bogoliubov de Gennes Hamiltonian is then
given by

HBdG = −µ
N∑
n=1

τz ⊗ |n〉 〈n| −
N−1∑
n=1

[(tτz + i∆τy)⊗ |n〉 〈n+ 1|+ h.c.] . (2.5)
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2. Non-Abelian Statistics and the Kitaev Chain

Note that this Hamiltonian has particle-hole symmetry since PHBdGP−1 = −HBdG
with P = τxK, where K is the complex conjugation. Solving this equation for the
eigenvalues then gives us the spectrum in figure 2.3, which is mirrored at E/t = 0 due
to the particle hole symmetry. Considering this, one can clearly see that there are two
phases: The topological phase where we have Majorana modes and the trivial phase
where we do not have Majorana modes. In order to be in the first phase, µ has to be
smaller than 2t. To be in the second phase, however, requires µ to be bigger than 2t.

(a) 25 lattice sites

trivial phasetopological phase

Majorana

modes

(b) 100 lattice sites

topological phase trivial phase

Majorana

modes

Figure 2.3.: Energy spectrum of (2.5) plotted in terms of µ. Both energies are rescaled
in terms of t. Two zero energy modes appear for µ smaller than 2t. The comparison of
both plots reveals a finite size effect. (a) Here we choose 25 lattice sites and we see that
the spectrum does not split at exactly 2t but below that. (b) Here we choose 100 lattice
sites and we see that the splitting starts almost at 2t. Thus, for an infinitely long chain
the splitting will be at exactly 2t.

To check if the zero energy states are localized at the edges, we look at the probability
density in dependence of the position in the chain. The probability density is given
by |u|2 + |v|2, where u are the eigenvectors corresponding to the electrons and v the
eigenvectors corresponding to the holes. For the zero energy states, we indeed observe
that they are localized at the edges in the topological phase and delocalized in the trivial
phase (see figure 2.4). Since the number of (spatially separated) Majorana fermions is
a topological invariant, this phase is called topological phase. We will explain what we
mean by topological in the next section. Therefore, Majorana fermions are topologically
protected in our system. It should still be mentioned that this localisation falls off
exponentially the closer one gets to the transition between the phases. The localisation
does not depend on the length of the chain since for longer chains the two Majorana
states are more separated.
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2.2. Kitaev Chain toy model

(a) topological µ/t = 0

Majorana modes

(b) trivial µ/t = 4

Figure 2.4.: Probability density of the two modes with the lowest energy with respect to
the position in the chain with 25 lattice sites. Here u represents the electron eigenvector
and v represents the hole eigenvector. The blue curve corresponds to the lowest energy
mode and the red curve to the next higher energy mode. (a) Probability density for
µ/t = 0. (b) Probability density for µ/t = 4.

2.2.3. Bulk-edge correspondence

Next we will examine the existence of Majorana modes by looking solely at the bulk and
by exploiting the concept of bulk-edge correspondence. To do so, we have to eliminate
the boundaries from the chain. We can do this by reconnecting the last site of the
chain to the first one so that the chain is closed and would build a “Kitaev ring“.
In the absence of boundaries, the Bogoliubov-de Gennes Hamiltonian has translation
symmetry |n〉 → |n+ 1〉, since all parameters t, ∆ and µ do not depend on the chain
site n. In the presence of translation symmetries, it is always convenient to use Bloch’s
theorem and write down the Hamiltonian in momentum space rather than in real space.
In our case, a state with momentum k is given by

|k〉 = 1√
N

N∑
n=1

e−ikn |n〉 .

Note the boundary condition is 〈k|n = 0〉 = 〈k|n = N〉. The momentum k is then
a conserved quantum number with allowed values 2πp

N where p = 0, 1, 2, ..., N − 1.
Values of k, which differ by 2π, are equivalent. Using this, the Bogoliubov-de Gennes
Hamiltonian in momentum space reads

H(k) = 〈k|HBdG |k〉 = (−2t cos k − µ)τz + 2∆ sin k τy (2.6)

in the basis ψ = (ψ,ψ†) = 〈k|C. Now we only have to diagonalize a 2x2 Matrix to
obtain the band structure of the Kitaev chain model. This results in two energy bands,
one with positive energy and one with negative energy:

E(k) = ±
√

(2t cos k + µ)2 + 4∆2 sin2 k.
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2. Non-Abelian Statistics and the Kitaev Chain

This shows us whether k = 0, resulting in a gap closing for µ = −2t, or if k = π, leaving
us with a gap closing for µ = 2t. Since for these cases we saw a phase transition in
real space, we know that a gap closing in the bulk Hamiltonian corresponds to a phase
transition from trivial to topological or vice versa.
Another way to quantify this phase change is to write the Hamiltonian in the following
form

H(k) = dx(k)τx + dy(k)τy + dz(k)τz

where dx,y,z are the components of the k-dependent 3-dimensional vector d(k). These
components can be read off from equation (2.6) and assume the form

dx(k) = 0; dy(k) = 2∆ sin(k); dz(k) = −2t cos(k)− µ.

From this we see in figure 2.5 that as k goes from zero to 2π, the path that the endpoint
of the vector d(k) traces out is an ellipse of radius 2 in z-direction and radius 2∆ in
y-direction on the dz, dy plane, centered at (µ,0). The topology of this loop can be
characterized by an integer, the bulk winding number ν. This counts the number of
times the loop winds around the origin of the dz, dy plane. The behaviour of the bands
can then be directly connected to topology since objects with the same topology can
be deformed continuously into each other. Additionally, it is not possible to get from
one topology to another topology without making a cut.

(a) µ = −2.5t

0
k

5
0
5

E/
t

(b) µ = −2t

0
k

5
0
5

E/
t

(c) µ = 0

0
k

5
0
5

E/
t

(d) µ = 2t

0
k

5
0
5

E/
t

(e) µ = 2.5t

0
k

5
0
5

E/
t

5 0 5
dz/t

2
0
2

d y
/t

5 0 5
dz/t

2
0
2

d y
/t

5 0 5
dz/t

2
0
2

d y
/t

5 0 5
dz/t

2
0
2

d y
/t

5 0 5
dz/t

2
0
2

d y
/t

Figure 2.5.: Bandstructure of equation (2.6) for ∆/t=1 upper panel and d(k) on lower
panel. The plots show two different approaches to classify topological phases. (a) trivial
phase, ν = 0, µ = −2.5t (b) in between the two phases, ν = undefined, µ = −2t (c)
topological phase, ν = 1, µ = 0 (d) in between the two phases, ν = undefined, µ = 2t
(e) trivial phase, ν = 0, µ = 2.5t. Here ν is an integer which describes how many times
the loop winds around the origin and µ corresponds to the chemical potential. Hence,
with µ we can control if the system is topological or not.
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2.3. Engineering an experimental platform

2.3. Engineering an experimental platform

Since we understand the basic idea of the Kitaev chain and Majorana fermions, we
want to engineer a system where these effects can be observed experimentally. One
possibility is to build the chain out of a semiconductor. Since in semiconductors the
electron density is very low, the chemical potential is near the bottom of the band. This
makes it easier to define µ with respect to the bottom of the band:

µ→ µ− 2t.

Now the transition between trivial and non-trivial states occurs, assuming µ = 0. Usu-

(a) no Majorana modes (b) Majorana modes

Figure 2.6.: Band structure of (2.7) with ∆/t = 0.1 for the solid line and ∆/t = 0
for dashed line. We plot the eigenvalues E scaled with the hopping parameter t with
respect to the momentum k. There one sees that ∆ opens a gap, where the two bands
overlap. (a) For µ < ∆ the system is trivial. Here we chose µ/t = −0.3 and we see
the characteristic parabolic shape for a trivial phase. (b) For µ > ∆ the system is
topological. Here we chose µ/t = 0.3 and observe the characteristic double well shape
for the topological phase.

ally semiconductors are not additionally superconducting. To achieve a similar effect,
we build a superconductor-semiconductor heterostructure letting the superconductor
induce superconductivity in the semiconductor. Next we consider that µ will always
stay small compared to the bandwidth, so µ� 2t. The same holds for superconducting
pairing ∆ � t. This is the case because superconductivity is a very weak effect com-
pared to the kinetic energy of electrons. These two inequalities combined mean that
we can expand (2.6) in terms of k, at the bottom of the band leading to the continuum
limit of the Kitaev model:

H =
(
k2

2m − µ
)
τz + 2∆τyk. (2.7)
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2. Non-Abelian Statistics and the Kitaev Chain

The effective electron mass m is the coefficient of the expansion and 2t ∼ 1
m . Let us

now look at the band structure in the trivial and in the topological phase shown in
figure 2.5. In the trivial phase, we see that the bands are ∼ ±k2, and in the topological
phase, we get a characteristic double well shape since we were looking for a gap closing
and reopening. It is only a sign of topological character in the way we show it here but
is not a necessary condition for that.

2.3.1. Adding spin

Until now, we only considered spinless fermions, which do not really exist. Therefore,
we need to introduce spin to our Hamiltonian by introducing a new space. This new
space is called spin space, and we define the Pauli matrices in it as σi. Since we want
that only one spin component is in the topological phase and the other spin component
is in the trivial phase, we have to control the chemical potential µ. For this reason we
choose spin up as µ > 0 and spin down as µ < 0, i.e. spin down carries the topological
character of the chain. Another important point is that since our Hamiltonian in (2.8)
has also time reversal symmetry for B = 0 since T HT † = H with T = −iσy being
the time reversal operator; the eigenstates are degenerate. This is due to Kramer’s-
Theorem saying that, for every eigenstate, we can construct a new eigenstate T ψ with
the same energy. By coupling the spin to an external magnetic field this condition
becomes natural and the corresponding Hamiltonian assumes the form

H =
(
k2

2mÎ − µ Î −Bσz

)
⊗ τz + 2∆k Î ⊗ τy (2.8)

where we now extended our basis to ψ = (ψ↑, ψ↓, ψ†↑, ψ
†
↓), τ are the Pauli matrices in

particle-hole space and σ are the Pauli matrices in spin space. In the following, we will
drop the identity matrices Î and the tensor product ⊗ in our notation. By adding a
magnetic field, we break the time reversal symmetry of the system. This explains why
for B 6= 0, Kramer’s degeneracy is lifted, leaving us with four instead of two bands.
Whenever the magnetic field B is larger than µ, we have one Majorana fermion at the
end of the chain. This is demonstrated in figure 2.7, where for the case B < µ we see
that both bands have the characteristic double well shape and, thus, both bands have
a topological character. For the case B > µ one of the bands has still the double well
shape and is, therefore, topological but the other band has a parabolic shape, meaning
it has no topological properties.
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2.3. Engineering an experimental platform

(a) no Majorana modes B/t = 0.1 (b) Majorana modes B/t = 0.4

Figure 2.7.: Band structure of (2.8) with ∆/t=0.1 for solid line, ∆/t=0 for dashed line
and µ/t=0.3. (a) For B < µ both bands are topological. This means that we cannot
have Majorana modes since they would then carry a spin which contradicts the condition
that they are their own antiparticles. Here we chose B/t = 0.1. (b) For B > µ one band
is topological and the other band is trivial. Here we chose B/t = 0.4.

2.3.2. Superconducting s-wave pairing

In the following, we will discuss the superconducting pairing, since the most supercon-
ductors do not have p-wave pairing but rather s-wave pairing, meaning that we have a
spin singlet in the annihilation and creation operators

Hpair = ∆s-wave(ψ↑ψ↓ − ψ↓ψ↑) + h.c. .

A detailed discussion on s-wave pairing can be found in appendix A.1. Before we change
the superconductivity to s-wave, we make a basis transformation first. In the old basis
the Hamiltonian was

H =
(
H0 ∆
∆∗ −H∗0

)

where H0 describes the part of our Hamiltonian where only µ and t are present and
∆ = 2 − i∆kÎ describes the p-wave pairing as before. The basis we will use now is
called the Nambu basis and is given by: ψ = (ψ↑, ψ↓, ψ†↓,−ψ

†
↑) while our Hamiltonian

is now

H =
(
H0 ∆′
∆′† −T H0T

)

where T = −iσyK, ∆′ = 2∆iσyk and K is the complex conjugation. Until now we still
consider p-wave pairing but in this basis the s-wave pairing is a unit matrix in spin
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2. Non-Abelian Statistics and the Kitaev Chain

(a) no Majorana modes B/t = 0.05
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(b) no Majorana modes B/t = 0.2
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Figure 2.8.: Band structure of (2.9) with µ/t = 0 and ∆/t = 0.1. (a) For B2 < µ2+∆2 the
system is trivial due to spin degeneracy. Here we chose B/t = 0.05. (b) For B2 > µ2+∆2

the system is topological. Here we chose B/t = 0.2.

space.
Now we want to write the Hamiltonian in the new basis. Since the magnetic field
changes sign under time-reversal symmetry, it has the same form for electrons and
holes. Because of this the Hamiltonian will be

H =
(
k2

2m − µ
)
τz +Bσz + ∆s-wave τx. (2.9)

In the following, we will define ∆s-wave ≡ ∆. Diagonalizing this Hamiltonian for k = 0
provides us the eigenvalues E = ±B±

√
µ2 + ∆2. For B = 0 the system is trivial since

we have spin degeneracy. That means we expect the system to be topological when
B2 > ∆2 + µ2. Looking at the spectrum in figure 2.8, we see that the bulk is not
gapped any more which means that we cannot have Majoranas in our system since they
are their own particle-hole partners and therefore cannot have any spin. The two bands
that cross at zero energy in the band structure in figure 2.8 belong to opposite spin
bands, and thus cannot be coupled. To open this gap, there are now two possibilities
discussed in the next two subchapters.

2.3.3. Spin-orbit coupling

One way is to add spin-orbit coupling. In experiments it was shown that the spin-orbit
coupling can open a gap in the s-wave superconductor [18]. By comparing (2.9) with
(2.8) we see that there is a term missing which is proportional to k. Spin-orbit coupling
gives such a term in its simplest form

HSO = ασyk
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2.3. Engineering an experimental platform

which can be interpreted as a magnetic field pointing in y-direction with a strength
proportional to the particle momentum. Since this term is invariant under time reversal
symmetry, the Hamiltonian is

H =
(
k2

2m + ασyk − µ
)
τz +Bσz + ∆τx. (2.10)

At k = 0 the spin-orbit coupling vanishes so it has no effect on the system being topo-
logical or trivial. Now our spectrum looks as shown in figure 2.9. We have again a

(a) no Majorana modes B/t = 0.05 (b) Majorana modes B/t = 0.2

Figure 2.9.: Band structure of (2.10) with α/t = 0.3, µ/t = 0. (a) For B2 < µ2 + ∆2 the
system is trivial due to spin degeneracy. Here we chose B/t = 0.05. (b) For B2 > µ2+∆2

the system is topological. Here we chose B/t = 0.2. We observe that a gap opens which
allows the existence of Majorana modes in this system.

gapped bulk with two bands showing a parabolic shape. Thus, those correspond to
the trivial phase. The other two bands have a double well shape, meaning that they
correspond to the topological phase.
Next we need to map the Hamiltonian in equation (2.10) to the Hamiltonian in (2.7).
To observe the same effects as in the toy model, there should exist a continuous trans-
formation connecting those two Hamiltonians. Following [16], we can do this by going
to the limit where the bands are nearly spin polarized in the direction of the magnetic
field. We then have to only consider the lower band but the induced superconductivity
is ∼ ψ↓ψ↑. As a result, we still have to consider these terms by writing ψ↑ ∼ iαk

B ψ↓
to project everything to one band since only then we are able to get Majorana modes.
With that we can write (2.10) as

ψ†Hψ ∼ ψ†↓

(
k2

2m − µ−B
)
ψ↓ + ψ↓∆ ·

iαk

B
ψ↓ + h.c.,
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2. Non-Abelian Statistics and the Kitaev Chain

whereas equation (2.7) can be written as

ψ†Hψ = ψ†
(
k2

2m − µ
)
ψ + ψ2i∆kψ + h.c. .

Comparing these two equations, we receive an effective description for our engineered
system:

ψ†Heffψ ∼ ψ†
(
k2

2m − µeff

)
ψ + ψ2i∆effkψ + h.c.

where µeff = µ+B and ∆eff = α
2B . With that we see that the effective superconducting

pairing is reduced by the magnetic field and enhanced by the spin-orbit coupling. On
top, the effective chemical potential depends on the magnetic field.

2.3.4. Inhomogeneous magnetic field

Another option to open a gap is to consider an inhomogeneous magnetic field. For
that we have to go back to real space since for a general inhomogeneous magnetic field
the system is not translational symmetric. So we write equation (2.9) in real space in
Nambu basis, meaning c = (c↑, c↓, c†↓,−c

†
↑), leading to

H =
∑
i

c†i (tτz)ci+1 + c†i (−µτz +Bi · σ + ∆τx)ci

where σ are the Pauli matrices in spin space and τ are the matrices in particle hole
space. Now the magnetic field B does depend on i. The position dependence can be
written as Bi = B0b̂i = (sin θi cosφi, sin θi sinφi, cos θi). In [17], Choy et al. showed
that this can be mapped to the following Hamiltonian

H = −
∑
i

(B0 + µ+ t
|βi|2 + |βi−1|2

2B0
)c†ici +

∑
i

[
tα∗c†ici+1 + t2

β∗i+1βi
2B0

c†ici+2

+
( 1

2B0
− 1

2µ

)
∆tβicici+1 + h.c.

] (2.11)

where αn and βn are parameters given by the spatial structure of the inhomogeneous
magnetic field and can be written as

αi = cos θi2 cos θi+1
2 + sin θi2 sin θi+1

2 e−i(φi−φi+1)

βi = − sin θi2 cos θi+1
2 eiφi + cos θi2 sin θi+1

2 eiφi+1 .

This effective Hamiltonian can be identified as the Kitaev Chain with the addition of
a next-nearest neighbour hopping term [17]. The pair potential ∆eff ∼ ∆tβi vanishes if
the magnetic moments are aligned because then βi = 0.
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2.3. Engineering an experimental platform

In the next chapter, we will introduce a method with which we take care of the self-
consistency condition of the pairing ∆. This condition is part of the derivation of the
theory of superconductivity and should be taken into consideration if we want to get a
stable solution of the considered system.
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3
Methods

In this chapter we build a framework in order to solve equation (2.10) and (2.11) not
only by diagonalization but also with a self-consistent field method. With the latter we
will be able to obtain solutions for the Bogoliubov de Gennes (BdG) equations which
are in a local minimum of the energy landscape. This ensures that the solution is stable
to local perturbations. With this method we will also be able to study the behaviour
of the considered system with respect to the temperature and the Debye frequency.
In the following we will do a mean field approximation which allows us to derive the
self-consistency condition. The code for this method can be found in chapter A.3 and
is based on a Matlab script of Kjetil Hals which he used in [29].

3.1. Derivation of the Bogoliubov de Gennes Hamiltonian

In order to include the self-consistency condition, we need to start from a mean field
theory. As a consequence, we consider a Hamiltonian consisting of a contribution de-
scribing non-interacting fermions H0 and a contribution that describes the interactions
HI . Since equation (2.10) is written in the continuum limit, we will write the Hamil-
tonian in a similar form. Additionally, we consider the field operators to be space
dependent because this allows us to consider systems without translational invariance.
Therefore the Hamiltonian can be written as

H = H0 +HI =
∫

d~r ψ†α(~r)hαβ(~r)ψβ(~r)− V

2

∫
d~r ψ†α(~r)ψ†β(~r)ψβ(~r)ψα(~r) (3.1)

where ψ†α(~r) is the real-space creation operator for a spin α, hαβ(~r) the one particle
Hamiltonian and V > 0 the interaction strength between the fermions. We added a
minus sign in front of the interaction because we want to treat superconductivity and
thus have an attractive interaction as formulated by Bardeen, Cooper and Schrieffer [30];
the starting point of BCS theory. Now we are able to define a mean field approximation,
where we consider pairs of two electrons

AB ∼= 〈A〉B +A 〈B〉 − 〈A〉 〈B〉
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3.1. Derivation of the Bogoliubov de Gennes Hamiltonian

with A = ψ†↑(~r)ψ
†
↓(~r) and B = ψ↓(~r)ψ↑(~r). Here, we have to keep in mind that this

pairing is only valid in a small shell around the Fermi energy. Ignoring the 〈A〉 〈B〉
term being a constant which shifts our energy spectrum, our interaction Hamiltonian
in the mean field approxiamtion is given by

HI =
∫

d~r
{

∆(~r)ψ†↑(~r)ψ
†
↓(~r) + ∆∗(~r)ψ↓(~r)ψ↑(~r)

}
where ∆(~r) = −V 〈ψ↓(~r)ψ↑(~r)〉 = V 〈ψ↑(~r)ψ↓(~r)〉 = V

2 ραβ〈ψα(~r)ψβ(~r)〉 and ραβ =
(iσy)αβ, which corresponds to s-wave pairing (see appendix A.1).
Next we perform a Bogoliubov transformation in order to diagonalize the Hamiltonian.
This means we express the field operator ψσ(~r) as a linear combination of the cre-
ation γ†n and annihilation γn operators, inducing particle-hole symmetry in which the
Hamiltonian is diagonal.

ψσ(~r) =
∑
n>0

{
uσ,n(~r)γn + v∗σ,n(~r)γ†n

}
. (3.2)

From now on we will discontinue writing the dependence of ~r explicitly. Here γn cor-
responds to quasiparticle excitations of the system. The coefficients in front of the
operators will be identified as the electron u and hole v wavefunctions of the quasipar-
ticles.
In order to get an equation for these wavefunctions, we first calculate the commutator
with the Hamiltonian in equation (3.1)

[H,ψσ] = −hσβψβ −∆ρσβψ†β. (3.3)

The same can be done for the diagonalized Hamiltonian Hdiag =
∑
n εnγ

†
nγn, where ε is

the energy of the excitation. Since the Hamiltonian is diagonal in the γ operators they
obey the commutation relation

[Hdiag, γn] = −εnγn[
Hdiag, γ

†
n

]
= εnγ

†
n

(3.4)

For the first one, equation (3.3) and then (3.2) was used, while for the second one,
equation (3.2) and then equation (3.4) was used. This leads to

[H,ψσ] =
∑
n>0

{
(−hσβuβ,n −∆ρσβvβ,n)γn + (−hσβv∗β,n −∆ρσβu∗β,n)γ†n

}
[H,ψσ] =

∑
n>0

{
−uσ,nεnγn + v∗σ,nεnγ

†
n

}
.

Comparing the factors in front of the γ operators this obeys the following matrix equa-
tion (

h~

~

∆ρ~

~

−∆∗ρ~

~

−h~

~

∗

)(
~un
~vn

)
= εn

(
~un
~vn

)
(3.5)
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with (~un, ~vn)T = (u↑,n, u↓,n, v↑,n, v↓,n)T , ρ~

~

= iσy and h~

~

being the matrix version of hαβ.
Here we can explicitly see that u are the electron wavefunctions and v are the hole
wavefunctions if we compare it with the matrix equation of the last chapter. Having
this matrix equation we are able to solve a Hamiltonian consisting of a one particle
contribution and an interaction of BCS type by diagonalizing for a given ∆. We can
now plug in equation (2.10) and are able to obtain the results in real space. However,
it is still left to calculate the pairing ∆ which will lead us to the self consistency
condition.

3.2. Self-consistency condition

Next we calculate the pairing ∆ with the equation we got from the mean field approx-
imation

∆ = V

2 {〈ψ↑ψ↓〉 − 〈ψ↓ψ↑〉}

which contains the expectation values of the fermion field operators. Using the Bogoli-
ubov transformation for the field operators (3.2) and 〈γ†nγn〉 = f(εn), we receive

〈ψσψσ̄〉 =
∑
n>0

{
(v∗σ,nuσ̄,n − v∗σ̄,nuσ,n)f(εn) + uσ,nv

∗
σ̄,n

}

where f(εn) =
(
exp( εn

kBT
) + 1

)−1
is the Fermi-Dirac distribution. Inserting this into

the pairing ∆, we get the following equation

∆ = −V2
∑
n>0

ραβv
∗
α,nuβ,n [1− 2f(εn)] . (3.6)

In the mean field approximation we already mentioned that the energy εn should stay
in a small shell around the Fermi energy. Only then the superconducting state is lowest
in energy and will be realized. This can be translated into the condition 0 < εn <
~ωD, where ωD is the Debye frequency. Because of this condition and the Fermi-Dirac
distribution, we are now able to study the behaviour of the considered system with
respect to the Debye frequency as well as the temperature. Both parameters can be
used to investigate the stability of the solution. However, with the Debye temperature
one is able to consider either weak superconductivity or strong superconductivity for
low or high Debye frequencies respectively since it controls the region in which the
superconducting state is stable.
The combination of equation (3.6) and equation (3.5) can be solved in a self-consistent
way. We will use the following procedure (see figure (3.1)): First, we guess an initial
pairing ∆ (for example choosing the same pairing ∆ for every lattice point), then we
calculate the eigenvectors and eigenvalues, which can then be used to calculate the
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Initial guess for 
the pairing

Calculate Eigenvalues
and Eigenvectors

Calculate the
new pairing 

No

Yes

Finished

Figure 3.1.: Procedure to solve the combination of equation (3.6) and equation (3.5) self-
consistently. The index i denotes the number of iterations and ξ defines the error when
the iteration is fullfilled. We set the error to 10−4

new pairing ∆, and finally we calculate the new eigenvectors and eigenvalues. This
procedure will be repeated until the relative error of the pairing potential ∆ is smaller
than ξ. We measure this change with the following condition

|∆i −∆i−1|
|∆i|

< ξ, (3.7)

where the index i describes the number of the iteration. We choose the value of the
error ξ to be 10−4 because we do not see any big changes in the energy any more. In
appendix A.4, one can find an example of a relaxation progress.

3.3. Discretization of the model

We derived a general model to solve a Hamiltonian with a one particle contribution
and an BCS interaction contribution. However, our goal is to solve the specific Hamil-
tonian in equation (2.10) within this model. The BCS interaction is already included
in equation (3.5), meaning that we only have to add h~

~

as follows:

h~

~

= − ~
2m(∂2

x + ∂2
y)− i~αR(σ̂x∂y − σ̂y∂x) + ~h · ~σ. (3.8)

Here we generalized the previous formula so that we are able to solve 2D systems
as well. For such systems, we then have to consider a more complicated spin-orbit
coupling which is the Rashba spin-orbit coupling. Also we allow different directions of
the magnetic field by introducing a magnetic field vector ~h that couples to the spins
of the electrons in the superconductor. The spins of the electrons are described by a
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vector of Pauli matrices ~σ.
In order to solve this on a computer we solve it on a lattice by choosing the central
differential approximation for the derivations

df
dx ≈

fi+a − fi−a
2a

d2f

dx2 ≈
fi+a − 2fi + fi−a

a2

where f is the quantity on which the derivative acts and a is the lattice constant.
Performing this approximation we get

h~

~

~u = V̂i,j~ui,j + t̂x~ui+a,j + t̂†x~ui−a,j + t̂y~ui,j+a + t̂†y~ui,j−a

∆ρ~

~

~u = i∆i,j σ̂y~ui,j

where i and j are the indices for the lattice in x and y direction respectively, ~ui,j are
the spinors for every point on the lattice, Vi,j are the onsite terms and tx are hopping
terms in x direction. These terms are given through

V̂i,j =
(

2~2

ma2 − µ
)
Î + ~hi,j · ~σ

t̂x = − ~2

2ma2 Î + i
~αR
2a σ̂y

t̂y = − ~2

2ma2 Î − i
~αR
2a σ̂x

where Î is the identity matrix in spin space. This can then be written as a two dimen-
sional tight binding Hamiltonians[29]

H = −t
∑
〈ij〉

(
c†icj + h.c.

)
− µ

∑
i

c†ici −
∑
i

c†i (hi · σ) ci

+i~αR2a
∑
〈ij〉

(
c†i ẑ ·

(
d̂ij × σ

)
cj + h.c.

)
+
∑
i

(
∆ic

†
i↑c
†
i↓ + h.c.

)
.

(3.9)

Here c†i = (c†i↑, c
†
i↓), where c

†
iα creates an electron with spin α at lattice site i = (x, y).

The symbol 〈ij〉 indicates a summation over nearest-neighbor lattice sites and dij is a
unit vector that points from site j to site i. Now we want to rescale these parameters
by dividing everything by t = ~2

2ma2 , resulting in scaling every quantity with respect to
the hopping part without spin-orbit coupling. Also we ignore the constant in the onsite
terms from now on. The parameters then are defined as in the following

V̂ ∗i,j = −µ∗Î + ~h∗i,j · ~σ
t̂∗x = −Î + iα∗Rσ̂y

t̂∗y = −Î − iα∗Rσ̂x

where α∗R ≡
~αR
2a

2ma2

~2 .
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3.4. Gap Closing Condition

3.4. Gap Closing Condition

In chapter 2.3 we expanded the Hamiltonian in k = 0 so that we could concentrate
on the gap closing while engineering the experimental platform. We have to keep
in mind though that there is a gap closing at k = π as well. Since our method
also treats two dimensional systems, we, furthermore, have four gap closings, namely
k = (0, 0), (0, π), (π, 0), (π, π). In [31], Sato et al. extensively studied the Hamilto-
nian in equation (3.9) in momentum space with a magnetic field in z-direction. The
Hamiltonian then reads

H = 1
2
∑
k,σ,σ′

(c†kσ, c−kσ)H(k)
(
ckσ′

c†−kσ

)
,

where the Bogoliubov-de Gennes Hamiltonian H(k) is given by

H(k) =
(
ε(k)− h∗zσz + α∗RL0(k) · σ i∆∗σy

−i(∆∗)∗ σy −ε(k) + h∗zσz + α∗RL0(k) · σ

)

where the energy band dispersion is ε(k) = −2(cos kx + cos ky) − µ∗ and the Rashba
spin-orbit coupling is α∗RL0(k) = α∗R(sin ky,− sin kx) with k = (kx, ky). The basis here
is the same but in momentum space ψ†i = (ψ†i↑, ψ

†
i↓). We will aquire the gap closing

condition by diagonalising this Hamiltonian which results in

E(k) =
√
ε(k)2 + (α∗R)2L0(k)2 + (h∗z)2 + |∆∗|2 ±

√
ε(k)2(α∗R)2L0(k)2 + [ε(k)2 + |∆∗|2] (h∗z)2.

(3.10)

This means that we get a gap closing if

ε(k)2 + (α∗R)2L0(k)2 + (h∗z)2 + |∆∗|2 =
√
ε(k)2(α∗R)2L0(k)2 + [ε(k)2 + |∆∗|2] (h∗z)2

which is equivalent to

ε(k)2 + |∆∗|2 = (α∗R)2L0(k)2 + (h∗z)2, |∆∗|2(α∗R)2L0(k)2 = 0. (3.11)

From that we find that L0(k) = 0 since α∗R 6= 0 and ∆∗ 6= 0. Thus, we recover the four
gap closing points mentioned before.

In the next chapter, we will use the derived method in order to search for Majorana
modes in more complicated systems which could open the possibility to move and
therefore braid these modes. The chapter is structured to continue where we opened
up with the Kitaev Chain and move step by step towards the desired system.
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4
From Kitaev Chain to Skyrmion-Vortex

Pairs

The aim of this chapter is to find a system where we will be able to move the Majorana
zero modes. This is a necessary condition which enables us to do quantum computation.
We will continue to discuss the Kitaev chain, since with the introduced method, we are
now able to discuss the Kitaev Chain from chapter 2 in real space representation. First,
we will consider the whole system to be one dimensional. And afterwards, we study
the same one dimensional system coupled to a two dimensional superconductor. These
results have been compared to the ones in literature to make sure if the implemented
method works correctly. Next we consider the easiest two dimensional system to identify
the topological phase diagram region by looking at bulk invariants, and then we show
that Majorana modes can indeed be localised, by using vortices as effective boundaries.
With regard of braiding Majorana zero modes, we also investigate the system with a
skyrmion in the ferromagnet. In the end, we discuss the combination of a skyrmion
in the ferromagnet and a vortex in the superconductor to exploit the advantages of
both systems. The code which was used throughout the whole chapter can be found
in appendix A.3 and is based on a Matlab script of Kjetil Hals which he used in [29].
The code became the biggest part of the work and with it we were able to show that
Majorana modes exist in skyrmion-vortex pairs.

4.1. Diagonalisation of the Kitaev Chain in Real Space

We will now continue where we left off in chapter 2 to see if the use of spin-orbit coupling
or an inhomogeneous field will enable us to observe Majorana zero modes.

4.1.1. Kitaev Chain with Spin-Orbit Coupling

First, we will consider a one dimensional superconductor with an additional one di-
mensional magnetic semiconductor on top as shown in figure 4.1. Of course such a
system does not exist, but we use it to test the proposed effective p-wave pairing. The
magnetic moments are homogeneously oriented with a strength of h∗0. We solve this
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4.1. Diagonalisation of the Kitaev Chain in Real Space

Figure 4.1.: Depiction of a 1D superconductor (purple) and a 1D magnetic semiconductor
(blue). The magnetisation in the semiconductor is aligned in the z-direction.

system by diagonalizing the Bogoliubov-de Gennes Hamiltonian and plot the energy
spectrum as well as the probability density of the Majorana modes in figure 4.2. Hence,
we have as expected regions where the system is topological and thus we are able to
observe Majorana zero modes. Further, the energy of these states is well separated
from the energy of the other states. The condition in which the system is topological
can be deduced from equation (3.11). Since we consider a one dimensional system, we
only have two gap closing conditions being k = 0 and k = π. This then results in the
following conditions

µ∗ = ±
√

(h∗0)2 − (∆∗)2 − 2, µ∗ = ±
√

(h∗0)2 − (∆∗)2 + 2. (4.1)

These conditions coincide with the region where the zero modes emerge. To verify those
to be the zero modes we are looking for, one has to check if they are localised at the
edges of the chain. To do so, we plot the probability density of these modes which can
be expressed as |u|2 + |v|2 where u corresponds to the eigenvectors of the electron and
v corresponds to the hole eigenvectors, see figure 4.2. One Majorana mode is localised
at the right edge and the other one on the left edge with a localization length of 3 sites.
We also plotted these modes for a chain length of Nx = 25 and Nx = 100 and we found
out, that they get more localised by keeping the same amplitude at the edges by going
to longer chains. The oscillation of the modes comes from the fact that we consider
only a system which can be mapped continuously onto the Kitaev Chain toy model.
We have two spin dependent bands for the electron in this system. Although we push
one band with a magnetic field out of the topological region there are still effects of
this non-topological band. That means that the qualitative results can be discovered
but it is still not the same as the toy model. In the next part we address the idea that
an inhomogeneous field can produce an effective spin-orbit coupling and therefore is
sufficient to give rise to Majorana zero modes.
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

(a) Energy spectrum (b) Majorana modes
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Figure 4.2.: (a) Energy spectrum of equation (3.5) where we use equation (3.8) in one
dimension. We plot the 20 lowest energies with respect to the chemical potential µ.
The parameters used here are: α∗

R = 0.3, h∗
0 = 2, Nx = 25 lattice points in x-direction

and Ny = 1 lattice points in y-direction. The black vertical lines mark where the gap
closes according to equation (4.1) and the shaded regions mark where the system is
topological. The red dotted line marks the chemical potential for which the Majorana
modes are plotted. (b) Plot of the probability density of the Majorana modes for µ∗=-
1.75, where u corresponds to the eigenvectors of the electrons and v corresponds to the
eigenvectors corresponding to the holes. The blue graph denotes the Majorana modes
of a chain with Nx = 25 and the red line for Ny = 100. One can see that the red curve
gets more localised. The black dotted line is a combined exponential function for left
and right edge and shows that the probability falls off exponentially to the middle of the
wire with a localization length of 3 sites.

4.1.2. Kitaev Chain with inhomogeneous Magnetic Field

In order to produce the mentioned effective spin-orbit coupling, we chose a whirling
magnetisation in the ferromagnet. This can be described by the following formula:

h∗ = h∗0 · (cos Φ sin f(r), sin Φ sin f(r), cos f(r)). (4.2)

In this definition Φ controls whether the magnetisation whirls around the x- or y-axis.
For Φ = π/2 it whirls purely around the x-axis and for Φ = 0 it whirls purely around
the y-axis. Everything in between is a combination of the two cases and whirls around
the axis sin Φx̂ − cos Φŷ. The other function we define as f(x) = n · 2π · x/Nx where
n represents the number of windings around an axis, x is the position of the arrow
and Nx is the length of the chain. The profile is defined in a way that the arrows at
the edges are always pointing up. In our setup we choose Φ = 0 and n/Nx = 0.16,
which can be seen in figure 4.3. However, we don’t use any spin-orbit coupling here.
The energy spectrum of this configuration can again be calculated by diagonalising the
corresponding Bogoliubov-de Gennes Hamiltonian. The results can be seen in figure 4.4.
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4.1. Diagonalisation of the Kitaev Chain in Real Space

Figure 4.3.: Depiction of a 1D superconductor (purple) and a 1D magnetic semiconductor
(blue). The magnetic semiconductor has a inhomogeneous magnetic structure denoted
by the arrows. The colour of the arrows represent the orientation in the z-direction where
blue means that the arrow is pointing up and red means that the arrow is pointing down.

This means that in the Energy spectrum we see, as expected, that there are zero modes

(a) Energy spectrum (b) Majorana modes
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Figure 4.4.: (a) A version of figure 4.2 with spin-orbit coupling set to zero (α∗
R = 0) and

instead using an inhomogeneous magnetic field defined in equation (4.2). Furthermore,
the gap between the zero modes and higher modes is bigger and the region where the
zero modes emerge is shifted towards smaller µ∗. (b) Here we have a better localisation
of the modes (localization length of 1.5 sites) in comparison to figure 4.2 (localization
length of 3 sites).

emerging for particular µ∗. In comparison to the previous system where we had only
spin-orbit coupling, the zero modes are further separated from the other states. We
check if the modes are localised at the edges by plotting the probability density of the
modes in the topological region. Here we see that for Nx = 25 the localization length is
half than for the other system. Even the amplitude of the modes is much higher. If we
increase the length of the chain to Nx = 100 the modes get more localised. Surprisingly,
the system with an inhomogeneous field seems to be the more optimal one. However,
then the question arises what happens if we turn on spin-orbit coupling in addition to
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

the inhomogeneous field. This should be studied because one will be confronted with
spin-orbit coupling in an experiment.

4.1.3. Kitaev Chain with inhomogeneous Magnetic Field and Spin-Orbit
coupling

In the following, we will consider a system that has spin-orbit coupling as well as an
inhomogeneous magnetisation which produces effective spin-orbit coupling. We will
keep the same inhomogeneous magnetisation and add spin-orbit coupling in addition.
Then we diagonalise the corresponding Bogoliubov-de Gennes Hamiltonian and plot
the energy spectrum and the probability density of the emerging zero modes, as seen in
figure 4.5. The addition of spin-orbit coupling reduces the separation of the zero modes

(a) Energy spectrum (b) Majorana modes
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Figure 4.5.: (a) Here we used the same parameters as in figure 4.2 but with an inho-
mogeneous magnetisation as in figure 4.4. The gap between the zero modes and higher
modes is larger than in 4.2 and smaller than in figure 4.4. The region where the zero
modes emerge is identical to figure 4.4. (b) Here we get a better localisation length (1.8
sites vs 3 sites) and a higher amplitude (0.31 vs 0.24) than in figure 4.2 but a bit worse
localisation (1.8 sites vs 1.5 sites) and a lower amplitude (0.31 vs 0.35) than in figure 4.4.

from the other modes. The region where it is topological is the same as in figure 4.4
since the spin-orbit coupling does not have any effect on these conditions 4.1. We also
check if the modes are localised at the edges and find out that they have almost the
same behaviour as for the system with only an inhomogeneous field. There is only a
small increase in localization length (1.5 sites to 1.8 sites) and amplitude (0.35 to 0.31).
Thus, the spin-orbit coupling does not destroy the localization of the modes, but it still
lowers the threshold for which the modes are stable against external perturbations.
As a next step, we will test if these observations also occur if we solve the system self
consistently. Before we only guessed a superconducting gap ∆∗ but now we let the
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4.2. Self consistent calculation of Kitaev Chain

system find its energy minimum by changing this gap spatially. This will ensure that
the solution is stable against external pertubations.

4.2. Self consistent calculation of Kitaev Chain

If we try to solve the heterostructures from the previous chapter with the self consistent
field method it will not converge since there is no stable one dimensional supercon-
ductor. To circumvent this problem one can consider the superconductor to be two
dimensional [32]. In the following, certain parameters shown in table 4.1 are used.

Name Symbol Value
Thermal energy kBT 0.001
Debye frequency ωD 2

Effective attractive interaction V 5
Error ξ 10−4

Table 4.1.: Values chosen for the self-consistent field method. All rescaled parameters with
respect to t except ξ. The thermal energy was chosen to be zero because we don’t study
the behaviour on temperature here. However, we had to choose a small value instead
of zero to avoid numerical problems. The debye frequency and the effective attractive
interaction were chosen accordingly to [32] in order to see if the implemented method
gives the same results as described in literature. The choice of ξ was already explained
in chapter 3.

As for the thermal energy, we had to choose a value close to zero because if we choose
zero the term εn

kBT
in the Fermi-Dirac distribution will cause numerical problems and

can be circumvented by choosing a very small value. Since we want to compare our
results to [32], we chose the Debye frequency ωD and the effective attractive interaction
according to them. Since Cadez et al. [32] did only consider spin-orbit coupling and
a homogeneous magnetisation, we will use this system to figure out if our method is
working. After that we will extend the study in order to verify that the effective p-wave
pairing also occurs in this method.

4.2.1. Spin-Orbit Coupling

At first, we consider a system consisting of a one dimensional ferromagnet placed on a
two dimensional superconductor. This configuration is shown in figure 4.6.
We solve the system with the procedure shown in figure 3.1. To get an overview of when
the system is topological, we plot the lowest energy mode with respect to µ∗ and h∗0.
Additionally, the spin-orbit coupling is considered a constant parameter which opens
the gap and therefore enables the existence of Majorana modes as discussed before.
Analogously, we should see that this mode gets close to zero if we are in the topological
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

Figure 4.6.: Depiction of a 2D superconductor (purple) and a 1D magnetic semiconductor
(blue). The magnetisation in the semiconductor is aligned in the z-direction. We placed
the ferromagnet with 4 sites of space to the edge to improve the convergence.

region. This can be observed in figure 4.7. In principle, the blue region marks the
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Figure 4.7.: Phase Diagram of the system with respect to h∗
0 and µ∗ for α∗

R = 0.3, Nx = 30
and Ny = 11. We plotted the logarithm log(E∗) of the lowest energy mode in order to
see where the transition from trivial to topological occurs. The point denotes where we
will look for Majorana modes and is placed at µ∗ = −0.9 and h∗

0 = 1.7.

area in which the modes localise - namely at the edges - which we also tested on a
random basis. We will look into this region a bit closer and consider the parameters
of the point (−0.9, 1.7) as a representative for this area. Furthermore, we check the
localisation of the modes for this choice of parameters. Since we have a spatially varying
superconducting gap we can study how the superconductor behaves in the presence of a
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4.2. Self consistent calculation of Kitaev Chain

magnetic field. These plots can be seen in figure 4.8. As expected, we find that the zero

(a) Probability density (b) Superconducting gap
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Figure 4.8.: (a) Probability density of the Majorana Modes. At the edges one can see that
they are localised. The light blue block corresponds to the region, where the ferromagnet
sits. (b) Plot of the superconducting gap ∆∗. The arrows denote the phase of ∆∗ and
the size is scaled with the absolute value. In this case the phase is always zero. The
absolute value is also plotted with colours in the background. One can see that the
superconducting gap goes to almost zero in the region of the ferromagnet.

modes localise at the edges of the ferromagnetic chain which is denoted as a box in the
figure. We also see that in the region of the ferromagnetic box the superconducting gap
goes to almost zero. That means that the magnetic field generated by the magnetisation
destroys the superconductivity. This is also expected by the Ginzburg-Landau theory
since one can change from the superconducting to the normal phase by applying a
magnetic field. In conclusion, our superconductor is a normal metal within this region
and the zero modes like to be localised here. Since there is a symmetry constraint on
the configuration the modes especially like to stay at the edges of the chain.

4.2.2. Inhomogeneous Field

We will do a similar analysis for the case where the ferromagnet has a whirling magneti-
sation. We define this exactly as before described in equation (4.2) with the same func-
tion f(r). A demonstration of this configuration can be found in figure 4.9. Analysing
this with the self-consistent field method, we observe a similar diagram as for the case
with only spin-orbit coupling (see figure 4.10).
We see the blue region, where we are in the topological phase, and get the localization
of the modes at the edges. However, we observe that there is a region where the energy
is really close to zero which coincides with the position where we found it before. We
will search in the same area for Majorana zero modes as before and the results can be
seen in figure 4.11. The modes are localised at the edges of the ferromagnetic region
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

Figure 4.9.: Depiction of a 2D superconductor (purple) and a 1D magnetic semiconductor
(blue). The magnetic semiconductor has a inhomogeneous magnetic structure denoted by
the arrows. The colour of the arrows represents the orientation in the z-direction where
blue means that the arrow is pointing up and red means that the arrow is pointing down.
We placed the ferromagnet with 4 sites of space to the edge to improve the convergence.
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Figure 4.10.: Same parameters used as in figure 4.7 but with an inhomogeneous field and
no spin-orbit coupling α∗

R. We see more or less the same plot as in 4.7. This means that
the method recovers that an inhomogeneous field produces effective p-wave pairing as
well as spin-orbit coupling.

and we do not see any reduction to the case before. Furthermore, the superconducting
gap behaves as expected so that we have a normal metal in the vicinity of the chain
and a superconductor everywhere else. This demonstrates that a winding magnetic
field produces effective p-wave pairing within this method.
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4.2. Self consistent calculation of Kitaev Chain

(a) Probability density (b) Superconducting gap
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Figure 4.11.: Same as in 4.8 but with inhomogeneous field and no spin-orbit coupling.
This again shows that the inhomogeneous field produces effective p-wave pairing as well
as spin-orbit coupling.

4.2.3. Combination of Spin-Orbit Coupling and Inhomogeneous Field

Next we try if turning on the spin-orbit coupling destroys what we observed before. Due
to the combination of spin-orbit coupling and an inhomogeneous field, one can expect
that the system relaxes differently. So we plot the lowest energy mode with respect to
µ∗ and h∗0, which is shown in figure 4.12. We recover the same region as before where
the system is topological. We also check for the localization in figure 4.13. One can
see that there is still a localization at the edges but we also see some oscillations in
the middle of the ferromagnetic region. This can be improved by taking a longer chain
or more windings in the magnetisation. However, the important features can still be
recovered. Also, the superconducting gap behaves as before. With that we showed that
the used method recovers Majorana zero modes even with the combination of spin-orbit
coupling and an inhomogeneous field.
But there still remains the question of how we can move these modes in order to observe
the non-Abelian statistics. This is a timely question since experiments are already able
to obtain such structures [19] although the final proof of the Majorana nature is still
disputed. As for the Kitaev chain, there are proposals to build a T junction and move
them by tuning the local chemical potential in a time-dependent manner with the gate
voltages [16]; but this is hard to do and not desirable for a device.
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Figure 4.12.: Same parameters used as in figure 4.7 but with an inhomogeneous field.
The plot looks the same as in figure 4.7 and figure 4.10. This shows that turning on the
spin-orbit coupling in the presence of an inhomogeneous does not drive us into another
energy minimum.

(a) Probability density (b) Superconducting gap
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Figure 4.13.: a) Same as in 4.8 (b) Same as in 4.8. Here we see that there occur oscillations
in the middle of the wire but the qualitative behaviour is the same. Furthermore, these
oscillations will disappear if we consider a longer chain.
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4.3. Two dimensional ferromagnetic Block on a two dimensional Superconductor

4.3. Two dimensional ferromagnetic Block on a two
dimensional Superconductor

Since moving the Majorana modes in a Kitaev Chain turns out to be difficult, people
began to search for Majorana modes in two dimensional systems also [33]. The easiest
configuration of this is shown in figure 4.14 where a two dimensional ferromagnetic
block is placed on a two dimensional superconductor. Within the ferromagnet, the
magnetisation points up everywhere with the strength h∗0. Here we want to see if we
can find the signatures of Majorana modes at the edges of the ferromagnet as proposed
within our method. At first we will look at the phase diagram in figure 4.15. Here the

Figure 4.14.: Depiction of a homogeneous magnetized ferromagnet on top of a supercon-
ductor.

blue region shows where the system is topological. This region can also be described by
the condition in equation (3.11). Since we have a two dimensional system, we have gap
closings at k = (0, 0), k = (0, π), k = (π, 0) and k = (π, π). Since for a square lattice
k = (0, π) and k = (π, 0), we will end up with the following three conditions, namely

(4 + µ∗)2 + (∆∗)2 = (h∗0)2, (µ∗)2 + (∆∗)2 = (h∗0)2, (4− µ∗)2 + (∆∗)2 = (h∗0)2.
(4.3)

These conditions are drawn as a black dashed line in the phase diagram. We see that
this fits qualitatively with the region where the energy goes close to zero. Next we
search in this phase diagram for the modes that are localised at the edge which can
be seen in figure 4.16. At first we search in the same region where we searched for the
Kitaev Chain. We observe that we get localised modes in the corners of the block. One
mode is localised in the lower left corner and the other one is localised in the upper
right corner. The other two corners are shared by both of the modes. We can exchange
the position of these two modes by taking a negative chemical potential. Furthermore,
we can get the configuration where one mode is in the upper left corner and the other
one in the lower right corner by doing the transformation x → −x or y → −y . Also,
the superconducting gap goes to zero inside the ferromagnetic block as we saw it for
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

Figure 4.15.: Phase Diagram of the system with respect to h∗
0 and µ∗ for α∗

R = 0.5,Nx = 23
and Ny = 23. We plotted the lowest energy mode logarithmic in order to see, where
the transition from trivial to topological happens. Also the analytical result for the gap
closing is drawn as a black dashed line. It matches only qualitatively to the shape in
the picture because the superconductor is smaller than the superconductor. The points
denote where we will look for the Majorana modes and is placed at µ∗ = −0.9 and
h∗

0 = 1.7 (point α) and µ∗ = −4 and h0 = 0.4 (point β). There seem to be regions,
where the energy seems to be closer to zero than for the two points. However those seem
to be errors from the interpolation.

the chain. A similar result can be seen in a system with a two dimensional topological
insulator on top of a high temperature superconductor [34]. In comparison to our
system they have two Majorana modes at each corner.
But there is another interesting region, where we get localised Majorana modes and
the superconductivity is not destroyed completely. In this region one mode is localised
on the upper and the right edge and the other mode is localised the left and lower
edge. We can get different configurations by the same symmetry operations as before.
The superconducting gap, however, behaves a bit different. Inside the block it is again
reduced but it does not go as close to zero as before since the applied field is lower and
the superconductor is not fully destroyed since we have a lower field.
Summing up, we see two interesting regions with localised Majorana zero modes. On
one hand, they are not spatially separated and therefore are unfortunately not useful
for quantum computation. On the other hand, it provides an easy check, by measuring
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(a) Probability density (b) Superconducting gap
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(c) Probability density (d) Superconducting gap
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Figure 4.16.: (a,b) correspond to point α and (b,c) correspond to point β. (a) Probability
density of the Majorana Modes. There are Majorana modes localised at the corners
of the block and the probability is fluctuating inside the block. The light blue block
corresponds to the region where the ferromagnet sits. (b) Plot of the superconducting
gap ∆∗. The arrows denote the phase of ∆∗ and the size is scaled with the absolute
value. The absolute value is also plotted with colours in the background. One can see
that the superconducting gap goes almost zero in the region of the ferromagnet. (c)
Here the Majorana modes are localised at the edge of the block and there is also a
small probability to find the mode in the middle. (d) The superconducting gap goes
not entirely to zero but it is still reduced inside the block. Also at the edge of the
superconductor it goes to zero.

the conductance, for experimentalists to see if their material has topological features.
There is no need of an internal structure in the material to see if one is in the right
region considering this is connected to much more effort.
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

4.4. Majorana Modes in Vortices

The existence of Majorana modes in superconducting vortices received great attention
since they obey non-Abelian statistics [27]. For this reason, we also consider a sys-
tem with a superconducting vortex within our method. We do not get an Abrikosov
vortex-lattice here, which one could expect, because the system size is smaller than the
separation of two vortices. With the magnetic semiconductor on top we still make sure
that just one of the electron bands is topological and the spin.orbit coupling will induce
effective p-wave pairing. Similar studies were also done in Refs. [35, 36]. An illustra-
tion of the configuration can be seen in figure 4.17 where the vortex is introduced as
∆Vortex = |∆∗|einφ(r) where n = ±1 defines the rotation of the vortex. In the following
we choose n = 1 and |∆∗| = 1. Next we plot the lowest energy mode with respect to µ∗

Figure 4.17.: Depiction of a homogeneous magnetized ferromagnet on top of a supercon-
ductor with a vortex in it.

and h∗0 which can be seen in figure 4.18. Here we see a completely different shape from
before. It seems that we have a bigger region where our system is topological. Also,
the localisation of the modes is not provided everywhere in the topological region. The
parameters have to be tuned in the right way to observe the desired localization. The
point in the plot marks the place where we find the best localization. In figure 4.19
we study the probability density of the zero modes and the behaviour of the supercon-
ducting gap. Here we now see that the Majorana modes are localised in the vicinity of
the vortex and on the edge of the ferromagnetic region. One can also observe that the
Majorana mode in the middle has the shape of a rhombus since it wants to connect to
the one on the edge. The same is present for the mode on the edge which reaches for
the one in the middle. This can be explained by analysing the superconducting gap.
There one can observe that the superconducting gap is high outside the ferromagnetic
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Figure 4.18.: Phase Diagram of the system with respect to h∗
0 and µ∗ for α∗

R = 0.5,Nx = 23
and Ny = 23. We plotted the lowest energy mode logarithmic in order to see where the
transition from trivial to topological happens. The point denotes where we will look for
the Majorana modes and is placed at µ∗ = −4 and h∗

0 = 0.4.

region and goes close to zero at the edges of the superconductor. Inside the region of
the ferromagnet the superconducting gap it is lower than what we saw before. It does
not go to zero though. Therefore, it is zero in the vicinity of the vortex since it is
like an impurity in the superconductor. Moreover, a vortex in the superconductor is a
region where the superconductor can be penetrated by a magnetic field. The Majorana
modes seem to localise at regions where an abrupt change in the superconducting gap
is happening. Thus, it will localise at the vortex and the edge of the ferromagnet and
we have to guarantee that the superconducting gap is lower than outside the vortex. As
soon as we have the same superconducting gap in the whole ferromagnet, we will lose
the localisation of the Majorana zero mode at the vortex. We also tried to stabilize two
vortices in this system in order to see if one Majorana mode localises at one vortex core
and the other one on the second vortex core. However, because of the vortex-vortex
repulsion, they push each other out of the system and the edge repulsion is not strong
enough to prevent it.
We have now a two dimensional system where we observe Majorana zero modes which
are spatially separated. This is convenient because vortices can be moved by low tem-
perature magnetic force microscopy [37].
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(a) Probability density (b) Superconducting gap
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Figure 4.19.: (a) Probability density of the Majorana Modes. One can see that there is
one mode localised at the vortex core and one at the edge. We scaled the one on the
edge with 4 because it is hard to see since the probability is distributed over a bigger
region. (b) Plot of the superconducting gap ∆∗. The arrows denote the phase of ∆∗ and
the size is scaled with the absolute value. The absolute value is also plotted with colours
in the background. One can see that the superconducting gap goes to almost zero in the
center of the vortex and is reduced in the region of the ferromagnet.

4.5. Majorana Modes in Skyrmions

Another possibility to get Majorana modes in a two dimensional system is a skyrmion
in the ferromagnet on top of the superconductor. This goes back to the idea that an
inhomogeneous field induces an effective spin-orbit coupling, enabling the existence of
Majorana zero modes as we already have seen in chapter 4.1.3. This was studied in [20]
where Yang et al. found that these modes can be localised in the vicinity of a skyrmion.
Skyrmions are desired structures in the magnetisation since they can be manipulated
by a variety of different techniques [38]. They are topological objects that can be
characterized by the winding number

q = 1
4π

∫
dx dy m · (∂xm× ∂ym)

where m describes the magnetization. This winding number is a topological invariant
which induces stability to this configuration. This stability makes them suitable for fu-
ture devices in information technology. Because of their drivability, one is then able to
move the corresponding Majorana modes bound to the skyrmion. The most promising
technique in terms of scaling arguments for quantum computers is the displacement by
electrical currents [21, 22]. This could then allow for braiding and would enable using
a system consisting of a skyrmion in a ferromagnet on a superconductor for quantum
computation.
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4.5. Majorana Modes in Skyrmions

(a) Skyrmion with q = 1 (b) Skyrmion with q = 2

Figure 4.20.: Depiction of a ferromagnet containing a Bloch skyrmion with winding num-
ber one and two on top of a superconductor.

Two possible configurations with a skyrmion in the ferromagnet can be seen in fig-
ure 4.20, defined by

h∗ = h∗0 · (cos Φ sin f(r), sin Φ sin f(r), cos f(r)) (4.4)

where h∗0 is the strength of the magnetisation, Φ = qφ+ϕ where φ is the polar coordinate
in real space and ϕ is the helicity of the skyrmion. For the function f(r), we pick the
following ansatz, f(r) = arccos( r2−R2

r2+R2 ) to approximate the profile of a small skyrmion
in a ferromagnetic thin film system [39]. Here r is the polar coordinate and R defines
the radius of the skyrmion. In the following, we will choose ϕ = π

2 , which corresponds
to a Bloch skyrmion, q = 2, R = 0.1 · L where L corresponds to the length of the
ferromagnet and we fix f(L) = 0.

4.5.1. Diagonalisation

First, we solve the system by diagonalizing the corresponding Bogoliubov-de Gennes
Hamiltonian to see if we are able to reproduce the results in [20]. This should be the
case because we used a a smooth definition for the skyrmion. The results can be seen
in figure 4.21. In the phase diagram, we see that the topological region starts at higher
fields because for the diagonalization we considered a uniform superconducting gap ∆∗.
We look at the black point for Majorana modes. Far away from this region, we will
loose the localization. For a winding number q = 1 we do not find any localised mode
at the skyrmion. That is the same result as found by Yang et al. [20]. For a winding
number q = 2 we find one mode which forms a ring in the vicinity of the skyrmion and
another mode which stays at the edge of the ferromagnet. With that we showed the
existence of spatially separated Majorana modes in the presence of a skyrmion in the
ferromagnet.
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(a) Phase Diagram
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(c) Phase Diagram
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(d) Probability density

Figure 4.21.: (a,c) Here we choose |∆∗| = 1, α∗
R = 0.5,Nx = Ny = 31 and a skyrmion

winding number of q = 1 for (a) and q = 2 for (b) on a superconductor. The black point
is at h∗

0 = 1.1 and µ∗ = −4. (b,d) Probability density of the Majorana modes. For (b)
there is no localisation in the skyrmion and for (d) we see a ring shaped localisation in
the skyrmion.

4.5.2. Self-Consistent Field Method

Now we test if the observed Majorana mode is indeed a stable solution of this system
by using the self-consistent field method. The phase diagram can be seen in figure 4.22.
We see that the topological region starts for lower fields since the superconductivity
is destroyed by the ferromagnet. This results in a topological region even for lower
magnetisation strengths. We search for Majorana modes in a region close to the one
where we found Majorana modes in the superconducting vortex. The results can be
seen in figure 4.23. In this figure we observe, by using the self-consistent field method,
that the spatial separation of the Majorana zero mode in the vicinity of the skyrmion

48



4.5. Majorana Modes in Skyrmions

6 4 2 0
*

0

1

2

3

h
* 0

8

6

4

2

0

ln
(E

* )

Figure 4.22.: Here we used α∗
R = 0.5, Nx = 23 and Ny = 23 to provide convergence of

the method. The point is placed at µ∗ = −4.2 and h∗
0 = 0.2.

(a) Probability density (b) Superconducting gap
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Figure 4.23.: (a) Probability density of the Majorana Modes. One can see that the modes
are not spatially separated and not well localised. (b) Plot of the superconducting gap
∆∗. One can see that the superconducting gap is reduced inside the skyrmion and also
on the right edge of the ferromagnet. This comes from the shape of the magnetisation in
a q = 2 skyrmion since on the right side the magnetisation is pointing up and therefore
extends the region where superconductivity is destroyed to the right.

is suppressed. We also searched for different parameters in the topological region in
the phase diagram only to find that the Majorana zero modes are not localised at the
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4. From Kitaev Chain to Skyrmion-Vortex Pairs

skyrmion anymore. The shape of this mode can be explained by the superconducting
gap. There we see that the superconductivity is reduced in the region where the mag-
netisation points up and the Majorana mode wants to localise inside this region. The
gap is also reduced on the right side of the ferromagnet which comes from the shape of
the skyrmion. In addition, the magnetisation of the skyrmion has an influence on the
phase of the superconductor since it changes its direction in the middle of the sample.
Since we cannot localise Majorana modes inside the skyrmion this does not seem to be
a stable solution within the self-consistent field method. Thus, in the next section we
will try another configuration to exploit the features of the skyrmion for topological
quantum computation.

4.6. Majorana Modes in Skyrmion-Vortex Pairs

To summarize, we saw that localization of Majorana modes is not a stable solution
of the self-consistent field method. However, we observed that Majorana modes can
be stabilized in vortex cores. Therefore, the idea now is to combine these two con-
figurations and see if this gives even a better result. Another reason to consider such
skyrmion-vortex pairs is that an attractive interaction between skyrmions and vortices
was proposed [29]. Because of this interaction, it ought to be possible to drive the
skyrmions with an electrical current dragging the vortex and the Majorana zero mode,
which is bound to it, with them. This enables us to do braiding within this system

Figure 4.24.: Depiction of a ferromagnet containing a Néel skyrmion with winding number
one on top of a superconductor with a vortex.

with the advantage that the zero mode is strongly bound to the vortex. A sketch of this
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Figure 4.25.: Phase Diagram of the system with respect to h∗
0 and µ∗ for α∗

R = 0.5,
Nx = 23 and Ny = 23. We plotted the lowest energy mode logarithmic in order to see
where the transition from trivial to topological happens. The point denotes where we
will look for the Majorana modes and is placed at µ∗ = −4 and h∗

0 = 0.4.

configuration can be seen in 4.24. We chose the same parametrization of the skyrmion
as in equation (4.4) and the same definition of the vortex as before. However, given
that a skyrmion with q = 2 is fairly unpractical, we choose to use q = 1 instead. Since
we consider thin films, it is plausible to use ϕ = 0 which is a Néel skyrmion. The phase
diagram for this system is shown in figure 4.25. We observe that the region is extended
in comparison to the one of the vortex. If we look in the same region now where we
looked for the vortex, we get the results shown in 4.26.
In the system where we only have one skyrmion-vortex pair, one Majorana mode lo-
calises at the pair and the other one localises at the edge. So far this is the same as for
the system with only a vortex. Yet, the modes are more spatially separated than before.
This means that the skyrmion in the ferromagnet enhances the localisation of the mode
in the vortex. We have seen a similar result in chapter 4.1 where the inhomogeneous
field also enhances the localisation of the modes. If we look at the superconducting
gap, we see, in principle, the same as for the vortex.
In this system, we are also able to study the presence of two skyrmion-vortex pairs. Be-
cause of the attraction between the skyrmions and vortices, we are able to prevent the
vortices from leaving the system. This also means that the attraction of the skyrmions
and vortices is stronger than the vortex-vortex repulsion. We observe that in such a
system each skyrmion-vortex pair carries a Majorana mode. The shape of these modes
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(a) Probability density (b) Superconducting gap
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(c) Probability density (d) Superconducting gap
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Figure 4.26.: (a) Probability density of the Majorana Modes. One can see that there is
one mode localised at the vortex core and one at the edge. We scaled the one on the
edge with 4 because it is hard to see since the probability is distributed over a bigger
region. (b) Plot of the superconducting gap ∆∗. The arrows denote the phase of ∆∗ and
the size is scaled with the absolute value. The absolute value is also plotted with colours
in the background. One can see that the superconducting gap goes to almost zero in the
center of the vortex and is reduced in the region of the ferromagnet. (c) The same as
in (a) but now with two skyrmion-vortex pairs. We see that every skyrmion-vortex pair
carries one Majorana mode. (d) same as (b) but now with two skyrmion-vortex pairs.
In each vortex, the superconducting gap goes almost to zero.

is not completely round due to the attractive interaction. This effect can be reduced
by choosing a bigger separation of the skyrmion-vortex pairs. Looking at the super-
conducting gap, it can be observed that it goes close to zero for both skyrmion-vortex
pairs but there is also an ellipsoid around the two pairs. Hence, it seems that they like
to build an ellipsoid where the superconductivity is destroyed. This is also an effect of
the proximity of the two pairs. Furthermore, the arrows now wind around the center of
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4.6. Majorana Modes in Skyrmion-Vortex Pairs

the vortex; one winds in the right direction and the other one winds in the left direc-
tion. Since this corresponds to opposite vorticities, it appears that the system wants to
reduce the vorticity of the system to minimize the energy. From another point of view,
one can say that if we put two vortices with the same vorticity in the superconductor,
as in 4.26 (b), then we would have two arrows that point in opposite directions in the
middle of the sample. Since this corresponds to a non-continuous step in the phase of
the superconducting gap this has a higher energy. Therefore when we let the system find
its energy minimum, it wants to find a configuration where such problems will not occur.
In Conclusion, we have found a system where a Majorana zero mode carried by skyrmion-
vortex pairs could possibly be moved by electrical currents which is a desired property
for building a scalable fault tolerant quantum computer. In the next chapter, we will
summarize the main results of this thesis and explain what the next steps could be to
go even further in the direction of building a topological quantum computer.
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5
Conclusion and Outlook

In this thesis, we investigated the existence of Majorana zero modes in ferromagnet-
superconductor heterostructures. By studying different configurations in the magneti-
zation of the ferromagnet and in the superconducting gap, we demonstrated that there
are many possibilities to realise Majorana zero modes in such systems. But, keeping in
mind that the aim is to build a quantum computer, not every configuration is suitable.
We analyzed these systems by either diagonalizing the corresponding Bogoliubov-de
Gennes Hamiltonian, or by using the self-consistent field method presented in chap-
ter 3.
In the beginning, we started with the simplest configuration where we considered a
one-dimensional system with a ferromagnetic chain on a superconductor (chapter 4.1),
which has been already realized experimentally [19]. There we saw that localized Majo-
rana zero modes at the ends of the chain are obtained by either using spin-orbit coupling
or by using an inhomogeneous field generated by the magnetization in the ferromag-
net, and this opens a gap in the band structure. In this system, the self-consistent
field method did not converge. To solve this problem, we considered a two dimensional
superconductor (chapter 4.2), and we found the same results as for the fully one dimen-
sional system by using the self-consistent field method. However, at the moment, the
most probable way to move the edge modes is to build a T junction and move them
by tuning the local chemical potential with time-dependent gate voltages [16], which is
difficult to realise in an experiment.
As a next step, we moved to a fully two dimensional system (chapter 4.3) where we,
at first, recovered the edge mode in a ferromagnetic block proposed in Ref. [33]. These
modes are rather impractical because they are not spatially separated. Nevertheless, it
can be used as a first hint that the considered system is topological.
Following this we considered the idea that there were also Majorana zero modes bound
to vortices in superconductors [35, 36] and also recovered this literature result in our
calculations (chapter 4.4). They are also movable by low temperature magnetic force
microscopy [37]. In principle, it is therefore possible to check if these modes also have
the proposed non-Abelian statistics. It needs to be noted though that this this approach
will cause problems if we want to scale up the number of Majorana modes for an actual
device.
A better configuration would then be to use Majorana modes bound to a skyrmion

54



(chapter 4.5), which was proposed in Ref. [20]. By using a more convenient definition for
the skyrmion, we observed similar results by diagonalizing the Bogoliubov-de Gennes
Hamiltonian of the corresponding system. Nevertheless, if we use the self-consistent
field method suggests that such a situation is not stable solution of the system; instead
of spatially separated modes, we are left with the modes not being spartially seperated.
This problem can be circumvented by exploiting the attractive interaction between
skyrmions and vortices by building so-called skyrmion-vortex pairs [29]. We observed
that it is possible to get localized Majorana zero modes in these Skyrmion-Vortex pairs
(chapter 4.6). We expect that if we move the skyrmion it should also drag the vortex
with it, thereby allowing us to braid these modes and check if they obey non-Abelian
statistics. This brings us directly to the outlook of this thesis.

The next step beyond this thesis is to recover non-Abelian statistics of the Majorana
modes in the skyrmion vortex pairs. In order to do so, we have to study the dynamics
of the system and move them in the way proposed in Ref. [27]. We propose to use
the configuration shown in figure 5.1 to realize this. This will also allow us to study

electric contacts

Figure 5.1.: Here we show a system where the non-Abelian statistics of skyrmion-vortex
pairs could be tested. The blue material is a ferromagnet which hosts skyrmions and
the purple material is a superconductor which hosts vortices. The yellow blocks are
contacts which can be used to control the movement of the skyrmion-vortex pairs. The
gray material is a non-magnetic insulator whose thickness controls the strength of the
magnetic field in the superconductor produced by the ferromagnet. And the red ovals
represent the skyrmion-vortex pairs.
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5. Conclusion and Outlook

the coherence of these operations. One way to extend the methodology described in
this thesis is to calculate the magnetisation of two or more skyrmions by using micro-
magnetic simulations. Such a magnetisation configuration can then be included in the
Bogoliubov-de Gennes equation as a magnetic field. Finally, there is still the problem
that the ferromagnet destroys the superconductivity in the superconductor. An alter-
native approach to circumvent this is to instead use an antiferromagnet. We expect this
to extend the region, where we obtain localized Majorana zero modes. For that, we have
to study if there is any coupling between an antiferromagnet and a superconductor.
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Appendix

A.1. Pairing

In [40] there is a really nice description of different pairings, which will help us through-
out this thesis. For this reason we will show the most important arguments of it here.
In BCS theory [30], the electron-phonon interaction leads to an effective attraction be-
tween electrons near the Fermi surface with opposite momenta and opposite spins, which
eventually causes superconductivity. Since the interaction of electrons with phonons is
isotropic in the k-space, the Cooper pairs are formed in a state with zero orbital angu-
lar momentum (s-wave pairing), which leads to a fully gapped superconducting state.
On the other hand, unconventional superconductivity is mostly characterized by the
anisotropic superconducting gap function with zeros (nodes) along certain directions in
the momentum space. Thus, the superconducting gap structure is closely related to the
paring interaction responsible for the superconductivity. Therefore detailed knowledge
of the gap structure will give a strong guide to establishing the pairing mechanism of
superconductivity.
The superconducting gap function ∆l

s1,s2(k), which is proportional to the amplitude of
the wave function of a Cooper pair Ψl

s1,s2(k) = 〈ψk,s1ψ−k,s2〉, serves as an order parame-
ter system: it is non-zero only in the superconducting state. Here, k is the quasiparticle
momentum, l is the orbital angular momentum, si is the electron spin, and ψ is the
electron annihilation operator. In the simplest case where the spin-orbit coupling is
negligible, the total angular momentum L and total spin S = s1 +s2 are good quantum
numbers, and Ψl

s1,s2(k) can be expressed in the form of a product of the orbital and
spin parts,

Ψl
s1,s2(k) = gl(k)χs(s1, s2),

where gl(k) is the orbital wave function and χs(s1, s2) is the spin wave function. Ac-
cording to the Pauli’s exclusion principle , the total wave function should change its
sign under the exchange of two particles;

gl(−k)χs(s2, s1) = −gl(k)χs(s1, s2).
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The orbital part gl(k) can be expanded in terms of spherical harmonics Ylm(k̂), which
are the eigenfunctions of the angular momentum operator with the momentum l and
its z-projections m,

gl(k) =
m∑

m=−l
alm(k)Ylm(k̂),

where k̂ = k/kF represents the direction of momentum. gl(k) is even for even values of l
and odd for odd values of l, gl(k) = (−1)lgl(k), and superconductors with l = 0, 1, 2, ...
are labelled as s, p, d, ...-wave, respectively. Hence, the spin component of a paired state
with even (odd) orbital angular momentum l should be antisymmetric (symmetric)
under the exchange of particles.
The spin wave function of the Cooper pair χs(s1, s2) is a product of the one-particle
spin wave functions,

ψ↑ =
(

1
0

)
= |↑〉 and ψ↓ =

(
0
1

)
= |↓〉 ,

which are eigenstates of the operators s2 and sz:

sz = ~
2

(
1 0
0 −1

)
, szψ↑ = ~

2ψ↑, szψ↓ = −~
2ψ↓

In the singlett state, S = 0, the spin part of the wave function is antisymmetric with
respect to the particle exchange. Therefore, the eigenfunction corresponding to the spin
singlet state can be given by

ψ↑ψ↓ − ψ↓ψ↑ = |↑↓〉 − |↓↑〉 =
(

0 1
−1 0

)
= iσy,

where σi(i = x, y, z) is the Pauli matrix,

σx = ~
2

(
0 1
1 0

)
, σy = ~

2

(
0 −i
i 0

)
, σz = ~

2

(
1 0
0 −1

)
.

As a result, the total wave function of the Cooper pair with S = 0 is given by

Ψl
singlet(k) = gl(k)iσy,

where l is even.
For spin triplet pairing (S=1), the spin wave functions corresponding to the three
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different spin projections on the quantization axis, which are symmetric under the
exchange of particle, are given by

Sz =



1, ψ↑ψ↑ = |↑↑〉 =
(

1 0
0 0

)

0, ψ↑ψ↓ + ψ↓ψ↑ = |↑↓〉+ |↓↑〉 =
(

0 1
1 0

)

−1, ψ↓ψ↓ = |↓↓〉 =
(

0 0
0 1

)
.

Consequently, the total wave function can be written as

Ψl
triplet = gl,1 |↑↑〉+ gl,0(k)(|↑↓〉+ |↓↑〉) + gl,−1 |↓↓〉 =

(
gl,1 gl,0
gl,0 gl,−1

)
,

where gl,Sz is defined as the amplitudes of states,

gl,Sz =
l∑

m=−l
aSz
lmY

m
l (k̂).

This equation can be rewritten as the following form by using the basis of the symmetric
matrices iσσy = (iσxσy, iσyσy, iσzσy),

Ψl
triplet = (d(k) · σ)iσy = (dx(k)σx, dy(k)σy, dz(k)σz)iσy

=
(
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
To summarize, the superconducting state can be characterized by its total spin S = 0
(spin-singlet) and S = 1 (spin-triplet). Thus, the superconducting gap functions for
the singlet and triplet pairings are given by

∆s-wave
k = ∆0 g(k)iσy

∆p-wave
k = ∆0 (d(k) · σ) iσy.

For an s-wave superconductor we do not have any k dependence resulting in g(k) being
a constant which we set equal to one. For p-wave pairing there are now different choices:
The most commonly used choice is d(k) = (kx ± iky, i(kx ± iky), 0) is called px + ipy
pairing but we also use d(k) = (0, 0, k) in this thesis. These two choices come from
the spherical harmonics Y m

l (k̂). For a p-wave superconductor we have that l = 1 and
m = 0,±1 which results in Y ±1

1 (k̂) ∝ kx ± iky and Y 0
1 (k̂) ∝ kz.

Concluding the three different pairings mentioned in this thesis are

∆s-wave
k ∝ ∆0 (ψ↑ψ↓ − ψ↓ψ↑) (A-1)

∆px+ipy-wave
k ∝ ∆0(kx ± ky) ψ↑ψ↑ (A-2)

∆p-wave
k ∝ ∆0k (ψ↑ψ↓ + ψ↓ψ↑). (A-3)
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A.2. Programs to produce Plots in Chapter 2

The following code was used to produce the plots in figure 2.3 and 2.4.
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4

5 # =====================================================================
6 # Definitions and functions
7

8 # Sets the size of the plot
9 matplotlib.rcParams.update({’font.size’:20})

10

11 # Define Pauli Matrices
12 pauli = [[[1, 0],[0, 1]],[[0, 1],[1, 0]],[[0,-1j],[1j, 0]],[[1,

0],[0,-1]]]
13

14 def SideDiag(n,l):
15 """
16 Purpose:
17 Makes a Matrix which has only entries at the side diagonal
18

19 Definitions:
20 l: Parameter that controls if we have entries on the right (-1) or on

the left (1)
21 n: Parameter defining how many sites the system has
22 """
23 a = np.zeros(shape=(n,n))
24 for j in range(n):
25 for i in range(n):
26 if j+l <= i <= j+l:
27 a[i][j] = 1
28 return a
29

30 def MuMatrix(mu,n):
31 """
32 Purpose:
33 Makes a Matrix corresponding to the onsite part in the Hamiltonian
34

35 Definitions:
36 mu: Parameter for controlling the chemical potential of the system
37 n: Parameter defining how many sites the system has
38 """
39 return -mu*np.tensordot(pauli[3],np.identity(n),axes=0)
40

41 def HoppingMatrix(n):
42 """
43 Purpose:
44 Makes a Matrix corresponding to the hopping part in the Hamiltonian.
45

46 Comment:
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47 All energies are scaled in terms of the hopping prameter t, therefore
we choose it equals 1 here.

48

49 Definitions:
50 n: Parameter defining how many sites the system has
51 """
52 return -np.tensordot(pauli[3],SideDiag(n,-1),axes=0)-np.tensordot(pauli

[3],SideDiag(n,1),axes=0)
53

54 def DeltaMatrix(D,n):
55 """
56 Purpose:
57 Makes a Matrix corresponding to the pairing part in the Hamiltonian
58

59 Definitions:
60 D: Parameter for controlling the BCS type pairing of electrons
61 n: Parameter defining how many sites the system has
62 """
63 return -D*1j*np.tensordot(pauli[2],SideDiag(n,-1),axes=0)+D*1j*np.

tensordot(pauli[2],SideDiag(n,1),axes=0)
64

65 def H(n,mu,D):
66 """
67 Purpose:
68 Puts together the different parts to a full Hamiltonian
69

70 Definitions:
71 D: Parameter for controlling the BCS type pairing of electrons
72 mu: Parameter for controlling the chemical potential of the system
73 n: Parameter defining how many sites the system has
74 """
75 tmp = MuMatrix(mu,n)+HoppingMatrix(n)+DeltaMatrix(D,n)
76 return np.row_stack((np.column_stack((tmp[0,0],tmp[0,1])),np.

column_stack((tmp[1,0],tmp[1,1]))))
77

78 def Eigensystem_H(n,mu,D):
79 """
80 Purpose:
81 Calculates the Eigenvectors and Eigenvalues of the Hamiltonian
82

83 Definitions:
84 D: Parameter for controlling the BCS type pairing of electrons
85 mu: Parameter for controlling the chemical potential of the system
86 n: Parameter defining how many sites the system has
87 """
88 ev, evec = np.linalg.eigh(H(n,mu,D))
89 return ev, evec
90

91 def PlotEigenvalues_H(n,mus,D):
92 """
93 Purpose:
94 Plots the Eigenvalues
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95

96 Definitions:
97 D: Parameter for controlling the BCS type pairing of electrons
98 mu: Parameter for controlling the chemical potential of the system
99 n: Parameter defining how many sites the system has

100 """
101 EVa=[]
102

103 for mu in mus:
104 ev, evec = Eigensystem_H(n,mu,D)
105 EVa.append(ev)
106

107 for i in range(2*n):
108 plt.plot(mus,np.transpose(EVa)[i],’b-’)
109

110 plt.xlim(0,4)
111 plt.xlabel(r"$\mu$/t")
112 plt.ylabel(r"E/t")
113 plt.tight_layout()
114

115 def PlotEigenvectors_H(n,mu,D):
116 """
117 Purpose:
118 Plots the Eigenvectors
119

120 Definitions:
121 D: Parameter for controlling the BCS type pairing of electrons
122 mu: Parameter for controlling the chemical potential of the system
123 n: Parameter defining how many sites the system has
124 """
125 ev, evec = Eigensystem_H(n,mu,D)
126

127 # Calculating the Probability density of the lowest energy modes
128 wf=evec[:,n]**2+evec[:,n-1]**2
129 # Calculating the Probability density of the next higher energy modes
130 wf_b=evec[:,n+1]**2+evec[:,n-2]**2
131

132 x = np.linspace(0,n-1,n)/(n-1)
133

134 plt.plot(x,wf[0:n],’b-’)
135 plt.plot(x,wf_b[0:n],’r--’)
136 plt.xlim(-0.003,1)
137 plt.ylim(0,0.5)
138 plt.xlabel("x/L")
139 plt.ylabel(r"$\left|u\right|^2+\left|v\right|^2$")
140 plt.tight_layout()
141

142 # =====================================================================
143 # Plot the Energie spectrum and the Probability Density of the

Hamiltonian using the definitions above
144

145 n = 25
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146 mus = np.linspace(0, 4, 1000)
147 D = 1
148

149 PlotEigenvalues_H(n,mus,D)
150 PlotEigenvectors_H(n,4,D)
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The following code was used to produce the plots in figure 2.5.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4

5 # =====================================================================
6 # Definitions and functions
7

8 # Sets the size of the plot
9 matplotlib.rcParams.update({’font.size’:20})

10

11 # Define Pauli Matrices
12 pauli = [[[1, 0],[0, 1]],[[0, 1],[1, 0]],[[0,-1j],[1j, 0]],[[1,

0],[0,-1]]]
13

14 def MuMatrix(k,mu):
15 """
16 Purpose:
17 Makes a Matrix corresponding to the onsite part in the Hamiltonian
18

19 Definitions:
20 k: Parameter that controls the momentum of the particles
21 mu: Parameter for controlling the chemical potential of the system
22 """
23 return (-2*np.cos(k)-mu)*np.tensordot(pauli[3],np.identity(2),axes=0)
24

25 def DeltaMatrix(D,k):
26 """
27 Purpose:
28 Makes a Matrix corresponding to the pairing part in the Hamiltonian
29

30 Definitions:
31 D: Parameter for controlling the BCS type pairing of electrons
32 k: Parameter that controls the momentum of the particles
33 """
34 return 2*D*np.sin(k)*np.tensordot(pauli[2],np.identity(2),axes=0)
35

36 def H_Bulk(k,mu,D):
37 """
38 Purpose:
39 Puts together the different parts to a full Hamiltonian
40

41 Definitions:
42 k: Parameter that controls the momentum of the particles
43 mu: Parameter for controlling the chemical potential of the system
44 D: Parameter for controlling the BCS type pairing of electrons
45 B: Parameter which controls the magnetic field
46 """
47 tmp = MuMatrix(k,mu)+DeltaMatrix(D,k)
48 return np.row_stack((np.column_stack((tmp[0,0],tmp[0,1])),np.

column_stack((tmp[1,0],tmp[1,1]))))
49
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50 def Eigensystem_H_Bulk(k,mu,D):
51 """
52 Purpose:
53 Calculates the Eigenvectors and Eigenvalues of the Bulk Hamiltonian in

momentum space
54

55 Definitions:
56 k: Parameter that controls the momentum of the particles
57 mu: Parameter for controlling the chemical potential of the system
58 D: Parameter for controlling the BCS type pairing of electrons
59 B: Parameter which controls the magnetic field
60 """
61 ev, evec = np.linalg.eigh(H_Bulk(k,mu,D))
62 return ev, evec
63

64 def PlotEigenvalues_H_Bulk(ks,mu,D):
65 """
66 Purpose:
67 Plots the Eigenvectors
68

69 Definitions:
70 k: Parameter that controls the momentum of the particles
71 mu: Parameter for controlling the chemical potential of the system
72 D: Parameter for controlling the BCS type pairing of electrons
73 B: Parameter which controls the magnetic field
74 """
75 fig, ax = plt.subplots()
76

77 EVa=[]
78

79 for k in ks:
80 ev, evec = Eigensystem_H_Bulk(k,mu,D)
81 EVa.append(ev)
82

83 ax.plot(ks,np.transpose(EVa)[0],’b-’)
84 ax.plot(ks,np.transpose(EVa)[1],’b-’)
85 ax.plot(ks,np.transpose(EVa)[2],’b-’)
86 ax.plot(ks,np.transpose(EVa)[3],’b-’)
87

88 plt.xlim(ks[0],ks[-1])
89 plt.ylim(-4,4)
90 plt.xlabel("k")
91 plt.ylabel("E/t")
92

93 # Making radian ticks
94 x_ticks = np.arange(-1,1.5,0.5)
95 x_label = [r"$-\pi$", r"$-\frac{\pi}{2}$", r"$0$", r"$\frac{\pi}{2}$",

r"$\pi$"]
96 ax.set_xticks(x_ticks*np.pi)
97 ax.set_xticklabels(x_label, fontsize=20)
98

99 plt.tight_layout()
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100

101 def PlotdVector(ks,mu,D):
102 """
103 Purpose:
104 Plots the Eigenvectors
105

106 Definitions:
107 k: Parameter that controls the momentum of the particles
108 mu: Parameter for controlling the chemical potential of the system
109 D: Parameter for controlling the BCS type pairing of electrons
110 B: Parameter which controls the magnetic field
111 """
112 dy = []
113 dz = []
114

115 for k in ks:
116 dy.append(2*D*np.sin(k))
117 dz.append(-2*np.cos(k)-mu)
118

119 plt.plot(dz,dy,’b-’)
120 plt.xlabel("$d_z/t$")
121 plt.ylabel("$d_y/t$")
122 plt.axis(’equal’)
123 plt.xlim(-5.1,5.1)
124 plt.ylim(-5.1,5.1)
125 plt.axhline(0,color=’k’)
126 plt.axvline(0,color=’k’)
127 plt.tight_layout()
128

129 # =====================================================================
130 # Plot the Energie spectrum of the Bulk Hamiltonian using the

definitions above
131

132 ks = np.linspace(-np.pi,np.pi,1000)
133 mu = 0
134 D = 1
135

136 PlotEigenvalues_H_Bulk(ks,mu,D)
137 PlotdVector(ks,mu,D)
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The following code was used to produce the plots in figure 2.6 and 2.7.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4

5 # =====================================================================
6 # Definitions and functions
7

8 # Sets the size of the plot
9 matplotlib.rcParams.update({’font.size’:20})

10

11 # Define Pauli Matrices
12 pauli = [[[1, 0],[0, 1]],[[0, 1],[1, 0]],[[0,-1j],[1j, 0]],[[1,

0],[0,-1]]]
13

14 def MuMatrix(k,mu):
15 """
16 Purpose:
17 Makes a Matrix corresponding to the onsite part in the Hamiltonian
18

19 Definitions:
20 k: Parameter that controls the momentum of the particles
21 mu: Parameter for controlling the chemical potential of the system
22 """
23 return (k**2-mu)*np.tensordot(pauli[3],np.identity(2),axes=0)
24

25 def DeltaMatrix(D,k):
26 """
27 Purpose:
28 Makes a Matrix corresponding to the pairing part in the Hamiltonian
29

30 Definitions:
31 D: Parameter for controlling the BCS type pairing of electrons
32 k: Parameter that controls the momentum of the particles
33 """
34 return 2*D*k*np.tensordot(pauli[2],np.identity(2),axes=0)
35

36 def MagneticFieldMatrix(B):
37 """
38 Purpose:
39 Makes a Matrix corresponding to the hopping part in the Hamiltonian.
40

41 Comment:
42 All energies are scaled in terms of the hopping prameter t, therefore

we choose it equals 1 here.
43

44 Definitions:
45 B: Parameter which controls the magnetic field
46 """
47 return -B*np.tensordot(pauli[3],pauli[3],axes=0)
48

49 def H_Bulk(k,mu,D,B):
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50 """
51 Purpose:
52 Puts together the different parts to a full Hamiltonian
53

54 Definitions:
55 k: Parameter that controls the momentum of the particles
56 mu: Parameter for controlling the chemical potential of the system
57 D: Parameter for controlling the BCS type pairing of electrons
58 B: Parameter which controls the magnetic field
59 """
60 tmp = MuMatrix(k,mu)+DeltaMatrix(D,k)+MagneticFieldMatrix(B)
61 return np.row_stack((np.column_stack((tmp[0,0],tmp[0,1])),np.

column_stack((tmp[1,0],tmp[1,1]))))
62

63 def Eigensystem_H_Bulk(k,mu,D,B):
64 """
65 Purpose:
66 Calculates the Eigenvectors and Eigenvalues of the Bulk Hamiltonian in

momentum space
67

68 Definitions:
69 k: Parameter that controls the momentum of the particles
70 mu: Parameter for controlling the chemical potential of the system
71 D: Parameter for controlling the BCS type pairing of electrons
72 B: Parameter which controls the magnetic field
73 """
74 ev, evec = np.linalg.eigh(H_Bulk(k,mu,D,B))
75 return ev, evec
76

77 def PlotEigenvalues_H_Bulk(ks,mu,D,B):
78 """
79 Purpose:
80 Plots the Eigenvectors
81

82 Definitions:
83 k: Parameter that controls the momentum of the particles
84 mu: Parameter for controlling the chemical potential of the system
85 D: Parameter for controlling the BCS type pairing of electrons
86 B: Parameter which controls the magnetic field
87 """
88 EVa=[]
89

90 for k in ks:
91 ev, evec = Eigensystem_H_Bulk(k,mu,D,B)
92 EVa.append(ev)
93

94 plt.plot(ks,np.transpose(EVa)[0],’b-’)
95 plt.plot(ks,np.transpose(EVa)[1],’b-’)
96 plt.plot(ks,np.transpose(EVa)[2],’b-’)
97 plt.plot(ks,np.transpose(EVa)[3],’b-’)
98

99 plt.xlim(ks[0],ks[-1])
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100 plt.xlabel("k")
101 plt.ylabel("E/t")
102 plt.xticks([-1,-0.5,0,0.5,1])
103 plt.tight_layout()
104

105 # =====================================================================
106 # Plot the Energie spectrum of the Bulk Hamiltonian using the

definitions above
107

108 ks = np.linspace(-1,1,1000)
109 mu = 0.3
110 D = 0.1
111 B = 0.4
112

113 PlotEigenvalues_H_Bulk(ks,mu,D,B)
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The following code was used to produce the plots in figure 2.8 and 2.9.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4

5 # =====================================================================
6 # Definitions and functions
7

8 # Sets the size of the plot
9 matplotlib.rcParams.update({’font.size’:20})

10

11 # Define Pauli Matrices
12 pauli = [[[1, 0],[0, 1]],[[0, 1],[1, 0]],[[0,-1j],[1j, 0]],[[1,

0],[0,-1]]]
13

14 def MuMatrix(k,mu):
15 """
16 Purpose:
17 Makes a Matrix corresponding to the onsite part in the Hamiltonian
18

19 Definitions:
20 k: Parameter that controls the momentum of the particles
21 mu: Parameter for controlling the chemical potential of the system
22 """
23 return (k**2-mu)*np.tensordot(pauli[3],np.identity(2),axes=0)
24

25 def DeltaMatrix(D):
26 """
27 Purpose:
28 Makes a Matrix corresponding to the pairing part in the Hamiltonian
29

30 Definitions:
31 D: Parameter for controlling the BCS type pairing of electrons
32 """
33 return D*np.tensordot(pauli[1],np.identity(2),axes=0)
34

35 def MagneticFieldMatrix(B):
36 """
37 Purpose:
38 Makes a Matrix corresponding to the hopping part in the Hamiltonian.
39

40 Comment:
41 All energies are scaled in terms of the hopping prameter t, therefore

we choose it equals 1 here.
42

43 Definitions:
44 B: Parameter which controls the magnetic field
45 """
46 return B*np.tensordot(np.identity(2),pauli[3],axes=0)
47

48 def SpinOrbitCouplingMatrix(alpha,k):
49 """
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50 Purpose:
51 Makes a Matrix corresponding to the spin-orbit coupling part in the

Hamiltonian.
52

53 Comment:
54 All energies are scaled in terms of the hopping prameter t, therefore

we choose it equals 1 here.
55

56 Definitions:
57 alpha: Parameter which controls the spin orbit coupling
58 k: Parameter that controls the momentum of the particles
59 """
60 return alpha*k*np.tensordot(pauli[3],pauli[2],axes=0)
61

62 def H_Bulk(k,mu,D,B,alpha):
63 """
64 Purpose:
65 Puts together the different parts to a full Hamiltonian
66

67 Definitions:
68 k: Parameter that controls the momentum of the particles
69 mu: Parameter for controlling the chemical potential of the system
70 D: Parameter for controlling the BCS type pairing of electrons
71 B: Parameter which controls the magnetic field
72 """
73 tmp = MuMatrix(k,mu)+DeltaMatrix(D)+MagneticFieldMatrix(B)+

SpinOrbitCouplingMatrix(alpha,k)
74 return np.row_stack((np.column_stack((tmp[0,0],tmp[0,1])),np.

column_stack((tmp[1,0],tmp[1,1]))))
75

76 def Eigensystem_H_Bulk(k,mu,D,B,alpha):
77 """
78 Purpose:
79 Calculates the Eigenvectors and Eigenvalues of the Bulk Hamiltonian in

momentum space
80

81 Definitions:
82 k: Parameter that controls the momentum of the particles
83 mu: Parameter for controlling the chemical potential of the system
84 D: Parameter for controlling the BCS type pairing of electrons
85 B: Parameter which controls the magnetic field
86 """
87 ev, evec = np.linalg.eigh(H_Bulk(k,mu,D,B,alpha))
88 return ev, evec
89

90 def PlotEigenvalues_H_Bulk(ks,mu,D,B,alpha):
91 """
92 Purpose:
93 Plots the Eigenvectors
94

95 Definitions:
96 k: Parameter that controls the momentum of the particles

71



A. Appendix

97 mu: Parameter for controlling the chemical potential of the system
98 D: Parameter for controlling the BCS type pairing of electrons
99 B: Parameter which controls the magnetic field

100 """
101 EVa=[]
102

103 for k in ks:
104 ev, evec = Eigensystem_H_Bulk(k,mu,D,B,alpha)
105 EVa.append(ev)
106

107 plt.plot(ks,np.transpose(EVa)[0],’b-’)
108 plt.plot(ks,np.transpose(EVa)[1],’b-’)
109 plt.plot(ks,np.transpose(EVa)[2],’b-’)
110 plt.plot(ks,np.transpose(EVa)[3],’b-’)
111

112 plt.xlim(ks[0],ks[-1])
113 plt.xlabel("k")
114 plt.ylabel("E/t")
115 plt.xticks([-1,-0.5,0,0.5,1])
116 plt.tight_layout()
117

118 # =====================================================================
119 # Plot the Energie spectrum of the Bulk Hamiltonian using the

definitions above
120

121 ks = np.linspace(-1,1,1000)
122 mu = 0
123 D = 0.1
124 B = 0.05
125 alpha = 0.3
126

127 PlotEigenvalues_H_Bulk(ks,mu,D,B,alpha)
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A.3. Program for the method in Chapter 3

The package that was used to realize the method is structured as follows:

SCF_BDG

demo

2D Block on a 2D superconductor

SampleScript.py

Kitaev Chain

SampleScript.py

Kitaev Chain with 2D superconductor

SampleScript.py

Skyrmion-Vortex pairs

SampleScript.py

Vortex in superconductor

SampleScript.py

Phase Diagram

LowestEnergyMode.py

SCF_BDG

__init__.py

MakeMatrices.py

Plot.py

RelaxCPU.py

RelaxGPU.py

vtk.py

xml.py

setup.py

README.md
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In the folder demo are the scripts which were used to produce the results that we
showed in chapter 4. They also serve as an orientation on how to use the package. In
the folder SCF_BDG the actual package is placed, consisting mainly out of the Make-
Matrices.py file which we will show in the following and will handle the Bogoliubov-de
Gennes Hamiltonian. The file Plot.py was created to simplify the procedure to plot
the results and we will not show it here. One can have a look at it if interested in the
github repository [41] which we will publish in the future. The heart of this package is
the RelaxCPU.py and RelaxGPU.py files where the self-consistent solution will be cal-
culated. For the GPU version we used the scikit-cuda [42] library. The two files vtk.py
and xml.py are used to export the profile of the magnetization to a vtk file so that we
can have a look at it with paraview [43]. We will not show them here. The setup.py
file is used to install the whole project and the README.md file gives informations
on how the installation could be done. The whole code was written on the basis of a
Matlab code written by Kjetil Hals used in [29].
We will show a few of the files contained in the package. At first we will show Make-
Matrices.py.

1 import numpy as np
2 import pickle
3

4 class MakeMatrix:
5 """
6 A class that helps to build the Bogoluibov-de Gennes Hamiltonian.
7 The Matrix is build the following way
8 (H | Delta)
9 (Delta| H )

10 The matrix H and Delta will be build by the functions contained in this
class.

11 """
12 #Constants:
13 hbar= 1.05457173e-34 # hbar
14 me= 9.10938e-31 # electron mass
15 a=1e-6 # lattice constant
16 energyScale= hbar*hbar/(2*me*a*a) #Hopping energy in absence of SOC
17

18 #internal parameters
19 s0 = np.array([[1, 0],[ 0, 1]])
20 s1 = np.array([[0, 1],[ 1, 0]])
21 s2 = np.array([[0, -1j],[1j, 0]])
22 s3 = np.array([[1, 0],[0, -1]])
23 p = np.array([[0, 1],[-1, 0]])
24 g = 5 #coupling strength of cooper pairs
25 thermE = 0.001 #thermal energy, kB*T
26 epsilonD = 2.0 #Debye frequency
27 nrM = 5 #number of positive Eigenvalues that are printed
28

29 def __init__(self):
30 self.V0=0
31 self.tx=0
32 self.ty=0
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33

34 #boundary conditions
35 self.bx=0
36 self.by=0
37

38 #parameters
39 self.Nx=0
40 self.Ny=0
41 self.alphaR=0
42 self.mu=0
43 self.h0=0
44

45 #difference in points between magnet and superconductor on boundary
46 self.randPointsX=0
47 self.randPointsY=0
48

49 #Positions of skyrmions
50 self.Srx=0
51 self.Sry=0
52

53 #Skyrmion Profile
54 self.VX=0
55 self.VY=0
56 self.VZ=0
57

58 #Polarity of Skyrmion
59 self.Sq=0
60

61 #Number of windings along r Skyrmion
62 self.Sp=1
63

64 #Winding number of Skyrmion
65 self.Sw=1
66

67 #thetaSkyrm= 0 (NÃc©el skyrmion); thetaSkyrm= pi/2 (Bloch skyrmion)
68 self.thetaSkyrm=0
69

70 #Positions of vortices
71 self.Vrx=0
72 self.Vry=0
73

74 #Vorticity of Vortex
75 self.Vq=0
76

77 #thetaVortex= 0 ("NÃc©el" vortex); thetaVortex= pi/2 ("Bloch" vortex)
78 self.thetaVortex=0
79

80 #initial delta
81 self.delta=0
82 self.deltainitial=0
83 self.deltan=0
84
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85 #Matrices
86 self.DeltaMatrix=0
87 self.h=0
88 self.Hmatrix=0
89 self.EnergyMatrix=0
90 self.DensityMatrix=0
91

92 #EigenValues/Eigenvectors
93 self.EigenValues=0
94 self.EigenValuesP=0
95 self.EigenVectors=0
96 self.EigenVectorsU=0
97 self.EigenVectorsV=0
98

99 #Majorana Densities
100 self.M1=0
101 self.M2=0
102

103 #Current
104 self.jx=0
105 self.jy=0
106 self.SOC=0
107

108 def MapFromVectorToMatrix(self,v):
109 """
110 Purpose: Converts a vector of length Nx*Ny into its corresponding Nx

times
111 Ny matrix
112 """
113

114 m= np.zeros(shape=(self.Nx,self.Ny),dtype=complex);
115

116 for i in range(self.Nx):
117 for j in range(self.Ny):
118 n= i + j*self.Nx
119 m[i,j]= v[n]
120

121 return m
122

123 def MakeConstantMatrices(self):
124 """"
125 Purpose:
126 Make the 2 times 2 constant (dimensionless) matrices that appear in

the discretized
127 version of the (scaled) Rashba Hamiltonian.
128

129 Definitions:
130 alpha: dimensionless Rashba parameter.
131 mu: dimensionless chemical potential.
132 a: lattice spacing
133 """
134
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135 #Write matrices:
136 self.V0= (4*0 - self.mu)*self.s0
137 self.tx= -1*self.s0 + 1j*self.alphaR*self.s2
138 self.ty= -1*self.s0 - 1j*self.alphaR*self.s1
139

140 def MakeDeltaMatrix(self):
141 """
142 Purpose:
143 The function makes the discretized version of the pairing potential.
144

145 Definitions:
146 delta: vector containing the on-site pairing potential (Nx*Ny

elements).
147 Nx, Ny: Number of lattice points along the x and y directions.
148 """
149

150 N= 2*self.Nx*self.Ny
151 DeltaMatrix= np.zeros(shape=(N, N),dtype=complex)
152

153 for i in range(self.Nx):
154 for j in range(self.Ny):
155 n= 2*i + 2*j*self.Nx
156 nd= i + j*self.Nx
157 DeltaMatrix[n:n+2,n:n+2]= self.delta[nd]*self.p
158

159 self.DeltaMatrix=DeltaMatrix
160

161 def MakeVortices(self):
162 """
163 Purpose: initiate pairing potential with k vortices located at (rxV,

ryV) with a vorticity Vq= -1/+1 and magnitude Delta0.
164 """
165

166 for k in range(len(self.Vrx)):
167 for i in range(self.Nx):
168 for j in range(self.Ny):
169 n= i + j*self.Nx
170 vx= np.double(i-self.Vrx[k])
171 vy= np.double(j-self.Vry[k])
172 v= [vx, vy]
173 NormV= np.linalg.norm(v)
174 if (NormV > 0.0):
175 v= v/NormV
176 phase= np.exp(1j*self.Vq*(np.angle(complex(v[0],v[1]))+self.

thetaVortex))
177 self.delta[n]= self.delta[n]*phase
178

179 def MakeFerroBlock(self):
180 """
181 Purpose: Make a ferromagnetic block. Which is one part of the H

matrix
182 """
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183

184 h= np.zeros(3*self.Nx*self.Ny,dtype=complex)
185 x1= self.randPointsX
186 x2= self.Nx - self.randPointsX
187 y1= self.randPointsY
188 y2= self.Ny - self.randPointsY
189

190 VX= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
191 VY= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
192 VZ= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
193

194 for i in range(x1,x2):
195 for j in range(y1,y2):
196 nh= 3*i + 3*j*self.Nx
197 h[nh]= 0
198 h[nh+1]= 0
199 h[nh+2]= self.h0
200 VX[i,j]= h[nh]
201 VY[i,j]= h[nh+1]
202 VZ[i,j]= h[nh+2]
203

204 self.h= h
205 self.VX=VX
206 self.VY=VY
207 self.VZ=VZ
208

209 def MakeInhomogeneousBlock(self):
210 """
211 Purpose: Make a ferromagnetic block with inhomogeneous magnetisation.

Which is one part auf the H matrix
212 """
213

214 h= np.zeros(3*self.Nx*self.Ny,dtype=complex)
215 x1= self.randPointsX
216 x2= self.Nx - self.randPointsX
217 y1= self.randPointsY
218 y2= self.Ny - self.randPointsY
219

220 VX= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
221 VY= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
222 VZ= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
223

224 for i in range(x1,x2):
225 for j in range(y1,y2):
226 nh= 3*i + 3*j*self.Nx
227 h[nh]= 0*np.sin(4*2*np.pi*(i-self.randPointsX)/(self.Nx-2*self.

randPointsX-1))
228 h[nh+1]= np.sin(4*2*np.pi*(i-self.randPointsX)/(self.Nx-2*self.

randPointsX-1))
229 h[nh+2]= np.cos(4*2*np.pi*(i-self.randPointsX)/(self.Nx-2*self.

randPointsX-1))
230 VX[i,j]= h[nh]
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231 VY[i,j]= h[nh+1]
232 VZ[i,j]= h[nh+2]
233

234 self.h= self.h0*h
235 self.VX=VX
236 self.VY=VY
237 self.VZ=VZ
238

239 def MakeSkyrmTextures(self):
240 """
241 Purpose: Make a skyrmion texture. Which is a part of the H matrix
242 If thetaSkyrm=0, the function returns Neel skyrmion, if thetaSkyrm=pi

/2 the function return a Bloch skyrmion.
243 """
244

245 x1= self.randPointsX
246 x2= self.Nx - self.randPointsX
247 y1= self.randPointsY
248 y2= self.Ny - self.randPointsY
249

250 size1= x2 - x1
251 size2= y2 - y1
252

253 l1= 0.1*np.double(min([size1, size2]))
254

255 h= np.zeros(3*self.Nx*self.Ny)
256

257 VX= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
258 VY= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
259 VZ= np.zeros(shape=(self.Nx,self.Ny),dtype=complex)
260

261 for k in range(len(self.Srx)):
262 for i in range(x1,x2):
263 for j in range(y1,y2):
264 nh= 3*i + 3*j*self.Nx
265 x= np.double(i-self.Srx[k])
266 y= np.double(j-self.Sry[k])
267 z= x**2 + y**2 - l1**2
268 N= x**2 + y**2 + l1**2
269 mxy= np.sin(self.Sp*np.arccos(z/N))
270 mz= -self.Sq*np.cos(self.Sp*np.arccos(z/N))
271 if (i==x1 or j==y1 or i==x2-1 or j==y2-1):
272 h[nh]= 0.0
273 h[nh+1]= 0.0
274 h[nh+2]= -self.Sq
275 else:
276 h[nh]= h[nh]+ np.sin(self.Sw*np.arctan2(x,y)+self.thetaSkyrm)

*mxy
277 h[nh+1]= h[nh+1]+ np.cos(self.Sw*np.arctan2(x,y)+self.

thetaSkyrm)*mxy
278 h[nh+2]= h[nh+2]+ mz
279 VX[i,j]= h[nh]
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280 VY[i,j]= h[nh+1]
281 VZ[i,j]= h[nh+2]
282

283 self.h= self.h0*h/len(self.Srx)
284 self.VX=VX/len(self.Srx)
285 self.VY=VY/len(self.Srx)
286 self.VZ=VZ/len(self.Srx)
287

288 def MakeHMatrix(self):
289 """
290 Purpose:
291 The function returns the discretized version of the Rashba

Hamiltonian with a position dependent exchange field.
292

293 Definitions:
294 V0: on-site potential proportional to the 2 times 2 identity matrix (

contains chemical potential).
295 tx,ty: 2 times 2 hopping matrices (contains Rashba SOC).
296 h: exchange field (3*Nx*Ny elements).
297 Nx, Ny: Number of lattice points along the x and y directions.
298 bx=0 if open bondary condition along x-boundary, bx=1 if periodic

boundary condition.
299 """
300

301 #Initiate H matrix:
302 N= 2*self.Nx*self.Ny
303 Hmatrix= np.zeros(shape=(N, N),dtype=complex)
304

305 #Define daggered matrices:
306 txd= np.conj(np.transpose(self.tx))
307 tyd= np.conj(np.transpose(self.ty))
308

309 #Write Hmatrix:
310 for i in range(self.Nx):
311 for j in range(self.Ny):
312 #Define indices:
313 n= 2*i + 2*j*self.Nx
314 ip= i+1
315 im= i-1
316 jp= j+1
317 jm= j-1
318 nip= 2*ip + 2*j*self.Nx
319 nim= 2*im + 2*j*self.Nx
320 njp= 2*i + 2*jp*self.Nx
321 njm= 2*i + 2*jm*self.Nx
322 nh= 3*i + 3*j*self.Nx
323 #Write diagonal elements:
324 htemp= self.h[nh:nh+3]
325 V= self.V0 + htemp[0]*self.s1 + htemp[1]*self.s2 + htemp[2]*self.

s3
326 Hmatrix[n:n+2,n:n+2]= V
327 #Write off-diagonal elements:
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328 if (i>0 and i<self.Nx-1 and j>0 and j<self.Ny-1): #internal
lattice points

329 Hmatrix[n:n+2,nip:nip+2]= self.tx
330 Hmatrix[n:n+2,nim:nim+2]= txd
331 Hmatrix[n:n+2,njp:njp+2]= self.ty
332 Hmatrix[n:n+2,njm:njm+2]= tyd
333 elif (i==0 and j==0): #corner points
334 nim= 2*im + 2*j*self.Nx
335 njm= 2*i + 2*jm*self.Nx
336 if(i<self.Nx-1):
337 Hmatrix[n:n+2,nip:nip+2]= self.tx
338 if(j<self.Ny-1):
339 Hmatrix[n:n+2,njp:njp+2]= self.ty
340 elif (i==0 and j==self.Ny-1):
341 nim= 2*im + 2*j*self.Nx
342 njp= 2*i + 2*jp*self.Nx
343 if(i<self.Nx-1):
344 Hmatrix[n:n+2,nip:nip+2]= self.tx
345 Hmatrix[n:n+2,njm:njm+2]= tyd
346 elif (j==0 and i==self.Nx-1):
347 nip= 2*ip + 2*j*self.Nx
348 njm= 2*i + 2*jm*self.Nx
349 Hmatrix[n:n+2,nim:nim+2]= txd
350 if(j<self.Ny-1):
351 Hmatrix[n:n+2,njp:njp+2]= self.ty
352 elif (i==self.Nx-1 and j==self.Ny-1):
353 nip= 2*ip + 2*j*self.Nx
354 njp= 2*i + 2*jp*self.Nx
355 Hmatrix[n:n+2,nim:nim+2]= txd
356 Hmatrix[n:n+2,njm:njm+2]= tyd
357 elif (i==0 and j>0 and j<self.Ny-1): #boundary points
358 if(i<self.Nx-1):
359 Hmatrix[n:n+2,nip:nip+2]= self.tx
360 Hmatrix[n:n+2,njp:njp+2]= self.ty
361 Hmatrix[n:n+2,njm:njm+2]= tyd
362 elif (i==self.Nx-1 and j>0 and j<self.Ny-1):
363 Hmatrix[n:n+2,nim:nim+2]= txd
364 Hmatrix[n:n+2,njp:njp+2]= self.ty
365 Hmatrix[n:n+2,njm:njm+2]= tyd
366 elif (j==0 and i>0 and i<self.Nx-1):
367 Hmatrix[n:n+2,nip:nip+2]= self.tx
368 Hmatrix[n:n+2,nim:nim+2]= txd
369 if(j<self.Ny-1):
370 Hmatrix[n:n+2,njp:njp+2]= self.ty
371 elif (j==self.Ny-1 and i>0 and i<self.Nx-1):
372 Hmatrix[n:n+2,nip:nip+2]= self.tx
373 Hmatrix[n:n+2,nim:nim+2]= txd
374 Hmatrix[n:n+2,njm:njm+2]= tyd
375

376 self.Hmatrix= Hmatrix
377

378 def MakeEnergyMatrix(self):
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379 """
380 Combine the whole matrix
381 """
382

383 N = len(self.Hmatrix[0,:])
384 EnergyMatrix = np.zeros(shape=(2*N,2*N),dtype= complex)
385 EnergyMatrix[0:N,0:N] = self.Hmatrix
386 EnergyMatrix[0:N,N:2*N] = self.DeltaMatrix
387 EnergyMatrix[N:2*N,0:N] = -np.conj(self.DeltaMatrix)
388 EnergyMatrix[N:2*N,N:2*N] = -np.conj(self.Hmatrix)
389

390 self.EnergyMatrix= EnergyMatrix
391

392 def PairingPotential(self):
393 """
394 Purpose:
395 The function calculates the pairing potential.
396

397 Definitions:
398 EigenVectors/values: contains all the eigenvectors and (positive)

eigenvalues of the BdG equation.
399 g: attractive on-site e-e coupling strength (g > 0).
400 thermE: thermal energy.
401 epsilonD: cut-off energy ~ Debye energy.
402 """
403

404 delta= np.zeros(self.Nx*self.Ny,dtype=complex)
405 Ne= len(self.EigenValuesP)
406

407 for k in range(Ne):
408 etemp= self.EigenValuesP[k]
409 if (etemp > self.epsilonD):
410 break
411 if (np.real(etemp) < 1e-13):
412 etemp = 1.j*np.imag(etemp)
413 if (np.imag(etemp) < 1e-13):
414 etemp = np.real(etemp)
415 etemp= etemp/self.thermE
416 fermi= 1/(np.exp(np.real(etemp)) + 1)
417 fermi= 2*fermi - 1
418 for i in range(self.Nx):
419 for j in range(self.Ny):
420 n= 2*i + 2*j*self.Nx
421 nd= i + j*self.Nx
422 prod= self.EigenVectorsU[n+1,k]*np.conj(self.EigenVectorsV[n,k

]) - self.EigenVectorsU[n,k]*np.conj(self.EigenVectorsV[n
+1,k])

423 delta[nd]= delta[nd] + 0.5*self.g*prod*fermi
424

425 self.deltan= delta
426

427 def MajoranaDensities(self):
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428 """
429 Purpose: Calculate probability density of the majorana fermions of

the
430 lowest energy states.
431

432 Comment:
433 Let f be a standard fermionic operator. It can be split into two MFs,

m1 and m2, by
434 f= (m1 + i*m2)/2 => m1= f^dagger + f and m2= i(f^dagger - f).
435 """
436

437 N_2= int(len(self.EigenValues)/2)
438

439 M1= np.zeros(shape=(self.Nx*self.Ny,self.nrM));
440 M2= np.zeros(shape=(self.Nx*self.Ny,self.nrM));
441

442 NV= 2*self.Nx*self.Ny
443

444 for k in range(self.nrM):
445 nmi= N_2 - k-1
446 npl= N_2 + k
447 vm= self.EigenVectors[:,nmi]#this is f^dagger (the hole

wavefunction).
448 vp= self.EigenVectors[:,npl]#this is f (the particle wavefunction).
449 m1= (vp + vm)/np.sqrt(2)
450 m2= (vp - vm)/np.sqrt(2)
451 Um1= m1[0:NV]
452 Vm1= m1[NV:2*NV]
453 Um2= m2[0:NV]
454 Vm2= m2[NV:2*NV]
455

456 for i in range(self.Nx):
457 for j in range(self.Ny):
458 n= 2*i + 2*j*self.Nx
459 nd= i + j*self.Nx
460 u1= Um1[n:n+2]
461 v1= Vm1[n:n+2]
462 u2= Um2[n:n+2]
463 v2= Vm2[n:n+2]
464 u1= np.linalg.norm(u1)
465 v1= np.linalg.norm(v1)
466 u2= np.linalg.norm(u2)
467 v2= np.linalg.norm(v2)
468 M1[nd,k]= u1*u1 + v1*v1
469 M2[nd,k]= u2*u2 + v2*v2
470

471 self.M1=M1
472 self.M2=M2
473

474 def SortEigVecVal(self):
475 """
476 Purpose:
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477 The function picks out the positive eigenvalues and the corresponding
eigenvectors.

478

479 Definitions:
480 eigval: diagonal matrix containing the eigenvalues
481 eigvec: matrix containing the eigenvectors, where eigvec(n,:)

corresponds
482 to the eigenvector of the BdG Hamiltonian with eigenvalue eigval(n,n)

.
483 The eigenvectors are normalized such that sum_{ij} (u_{ij}^2 + v_{ij

}^2) = 1.
484 However, note that the correct normalization condition is the

unscaled
485 system should be sum_{ij} a^2 (u_{ij}^2 + v_{ij}^2) = 1.
486 """
487

488 Ne= len(self.EigenValues)
489 Ne= np.int64(Ne/2)
490 N= len(self.EigenVectors[:,1])
491 N_2= np.int64(N/2)
492

493 #initiate matrices:
494 self.EigenValuesP= np.zeros(Ne,dtype=complex)
495 self.EigenVectorsU= np.zeros(shape=(N_2,Ne),dtype=complex)
496 self.EigenVectorsV= np.zeros(shape=(N_2,Ne),dtype=complex)
497

498 #Write vectors and values
499 for i in range(Ne):
500 itemp= Ne + i;#1,...,Ne contains the negative eigenvalues.
501 self.EigenValuesP[i] = np.real(self.EigenValues[itemp])
502 self.EigenVectorsU[:,i]= self.EigenVectors[0:N_2,itemp]
503 self.EigenVectorsV[:,i]= self.EigenVectors[N_2:N,itemp]
504

505 def MakeDensityMatrix(self):
506 """
507 Purpose: Calculates density of each eigenfunction.
508 """
509 Ne= len(self.EigenVectorsU[1,:])
510 density= np.zeros(shape=(self.Nx*self.Ny,Ne))
511

512 for k in range(Ne):
513 for i in range(self.Nx):
514 for j in range(self.Ny):
515 n= 2*i + 2*j*self.Nx
516 nd= i + j*self.Nx
517 u= self.EigenVectorsU[n:n+2,k]
518 v= self.EigenVectorsV[n:n+2,k]
519 u= np.linalg.norm(u)
520 v= np.linalg.norm(v)
521 density[nd,k]= u*u + v*v
522

523 self.DensityMatrix=density
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524

525 def CalculateCurrent(self):
526 """
527 Purpose: Calculates the equilibrium current density in units of 2*e*t

/hbar= C/s (t: spin-independent hopping amplitude).
528 """
529

530 if (self.SOC==0):
531 vsox= -self.s2
532 vsoy= self.s1
533 elif (self.SOC==1):# x=[100]. NB: x=[010] is found by changing the

alpha sign
534 vsox= -self.s1
535 vsoy= self.s2
536 elif (self.SOC==2):# x=[110]. NB: x=[-110] is found by changing the

alpha sign
537 vsox= self.s2
538 vsoy= self.s1
539

540 jSOScale= self.alphaR;
541 j0Scale= 1;
542

543 Ne= len(self.EigenValuesP);
544 j0x= np.zeros(shape=(self.Nx,self.Ny));
545 j0y= np.zeros(shape=(self.Nx,self.Ny));
546 jSOx= np.zeros(shape=(self.Nx,self.Ny));
547 jSOy= np.zeros(shape=(self.Nx,self.Ny));
548 epsilonD= self.epsilonD/self.thermE;
549

550 for k in range(Ne):
551 ek= self.EigenValuesP[k]/self.thermE
552 if(ek > epsilonD):
553 break
554 if (np.real(ek) < 1e-13):
555 ek = 1.j*np.imag(ek)
556 if (np.imag(ek) < 1e-13):
557 ek = np.real(ek)
558 fe= 1/(np.exp(ek) + 1)
559 fh= 1- fe
560 for i in range(1,self.Nx-1):
561 for j in range(1,self.Ny-1):
562 ip= i+1
563 im= i-1
564 jp= j+1
565 jm= j-1
566 n= 2*i + 2*j*self.Nx
567 nxp= 2*ip + 2*j*self.Nx
568 nxm= 2*im + 2*j*self.Nx
569 nyp= 2*i + 2*jp*self.Nx
570 nym= 2*i + 2*jm*self.Nx
571 u= self.EigenVectorsU[n:n+2,k]#electron-like spinor at n.
572 v= self.EigenVectorsV[n:n+2,k]#hole-like spinor at n.
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573 ux= np.dot(vsox,u)
574 vx= np.dot(vsox,np.conj(v))
575 uy= np.dot(vsoy,u)
576 vy= np.dot(vsoy,np.conj(v))
577 u= np.conj(u)
578 dudx= 0.5*(self.EigenVectorsU[nxp:nxp+2,k] - self.EigenVectorsU

[nxm:nxm+2,k])
579 dvdx= np.conj(0.5*(self.EigenVectorsV[nxp:nxp+2,k] - self.

EigenVectorsV[nxm:nxm+2,k]))
580 dudy= 0.5*(self.EigenVectorsU[nyp:nyp+2,k] - self.EigenVectorsU

[nym:nym+2,k])
581 dvdy= np.conj(0.5*(self.EigenVectorsV[nyp:nyp+2,k] - self.

EigenVectorsV[nym:nym+2,k]))
582 current0x= np.imag(np.dot(u,dudx)*fe + np.dot(v,dvdx)*fh)
583 current0y= np.imag(np.dot(u,dudy)*fe + np.dot(v,dvdy)*fh)
584 currentSOx= np.real(np.dot(u,ux)*fe + np.dot(v,vx)*fh)
585 currentSOy= np.real(np.dot(u,uy)*fe + np.dot(v,vy)*fh)
586 j0x[i,j]= j0x[i,j] + current0x
587 j0y[i,j]= j0y[i,j] + current0y
588 jSOx[i,j]= jSOx[i,j] + currentSOx
589 jSOy[i,j]= jSOy[i,j] + currentSOy
590

591 self.jx= j0Scale*j0x + jSOScale*jSOx
592 self.jy= j0Scale*j0y + jSOScale*jSOy
593

594 def CalculateEigenValues(self):
595 """
596 Purpose: solve Bdg eigenvalue problem
597 """
598

599 self.MakeDeltaMatrix()
600 self.MakeEnergyMatrix()
601 [self.EigenValues,self.EigenVectors]= np.linalg.eigh(self.

EnergyMatrix)
602 self.SortEigVecVal()
603

604 def Save(self,filename):
605 """
606 Purpose: saves the whole object into a file
607 """
608

609 pickle.dump(self,open(filename,"wb"),pickle.HIGHEST_PROTOCOL)

Next we show RelaxCPU.py.

1 import numpy as np
2

3 def RelaxPlot(Matrix,p):
4 """
5 Purpose: solve Bdg eigenvalue problem self consistently and show the

pairing potential of every step.
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6 """
7

8 Matrix.deltainitial=Matrix.delta
9

10 for i in range(Matrix.Nmax):
11 Matrix.MakeDeltaMatrix()
12 Matrix.MakeEnergyMatrix()
13 [Matrix.EigenValues,Matrix.EigenVectors]= np.linalg.eigh(Matrix.

EnergyMatrix)
14 Matrix.SortEigVecVal()
15 Matrix.PairingPotential()
16 dv= abs(Matrix.deltan) - abs(Matrix.delta);
17 error= np.linalg.norm(dv)/np.linalg.norm(abs(Matrix.deltan));#

checking convergence of the cooper pair density
18 print(’iteration number: %d, error: %f, total energy: %f\n’%(i,error,

sum(np.real(Matrix.EigenValuesP))))
19 if(error < Matrix.Maxerror) or (np.linalg.norm(dv) == 0):
20 break
21 Matrix.delta= Matrix.deltan
22 p.VectorPlotDeltaLive(Matrix,i)
23

24 def Relax(Matrix):
25 """
26 Purpose: solve Bdg eigenvalue problem Matrix consistently
27 """
28

29 Matrix.deltainitial=Matrix.delta
30

31 for i in range(Matrix.Nmax):
32 Matrix.MakeDeltaMatrix()
33 Matrix.MakeEnergyMatrix()
34 [Matrix.EigenValues,Matrix.EigenVectors]= np.linalg.eigh(Matrix.

EnergyMatrix)
35 Matrix.SortEigVecVal()
36 Matrix.PairingPotential()
37 dv= abs(Matrix.deltan) - abs(Matrix.delta)
38 error= np.linalg.norm(dv)/np.linalg.norm(abs(Matrix.deltan)) #

checking convergence of the cooper pair density
39 print(’iteration number: %d, error: %f, total energy: %f\n’%(i,error,

sum(np.real(Matrix.EigenValuesP))))
40 if(error < Matrix.Maxerror) or (np.linalg.norm(dv) == 0):
41 break
42 Matrix.delta= Matrix.deltan

Next we show RelaxGPU.py.

1 import numpy as np
2 import pycuda.gpuarray as gpuarray
3 import pycuda.autoinit
4 from skcuda import linalg
5
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6 def RelaxGPU_NP(Matrix):
7 """
8 Purpose: solve Bdg eigenvalue problem self consistently, without

printing lines.
9 """

10 linalg.init()
11

12 Matrix.deltainitial=Matrix.delta
13

14 for i in range(Matrix.Nmax):
15 Matrix.MakeDeltaMatrix()
16 Matrix.MakeEnergyMatrix()
17 a_gpu = gpuarray.to_gpu(Matrix.EnergyMatrix)
18 vr_gpu, w_gpu = linalg.eig(a_gpu, ’N’, ’V’)
19 Matrix.EigenValues = w_gpu.get()
20 Matrix.EigenVectors = np.transpose(np.conj(vr_gpu.get()))
21 Matrix.SortEigVecVal()
22 Matrix.PairingPotential()
23 dv= abs(Matrix.deltan) - abs(Matrix.delta);
24 error= np.linalg.norm(dv)/np.linalg.norm(abs(Matrix.deltan));#

checking convergence of the cooper pair density
25 if(error < Matrix.Maxerror) or (np.linalg.norm(dv) == 0):
26 break
27 Matrix.delta= Matrix.deltan
28

29 def RelaxGPU(Matrix):
30 """
31 Purpose: solve Bdg eigenvalue problem self consistently
32 """
33 linalg.init()
34

35 Matrix.deltainitial=Matrix.delta
36

37 for i in range(Matrix.Nmax):
38 Matrix.MakeDeltaMatrix()
39 Matrix.MakeEnergyMatrix()
40 a_gpu = gpuarray.to_gpu(Matrix.EnergyMatrix)
41 vr_gpu, w_gpu = linalg.eig(a_gpu, ’N’, ’V’)
42 Matrix.EigenValues = w_gpu.get()
43 Matrix.EigenVectors = np.transpose(np.conj(vr_gpu.get()))
44 Matrix.SortEigVecVal()
45 Matrix.PairingPotential()
46 dv= abs(Matrix.deltan) - abs(Matrix.delta);
47 error= np.linalg.norm(dv)/np.linalg.norm(abs(Matrix.deltan));#

checking convergence of the cooper pair density
48 print(’iteration number: %d, error: %f, total energy: %f\n’%(i,error,

sum(np.real(Matrix.EigenValuesP))))
49 if(error < Matrix.Maxerror) or (np.linalg.norm(dv) == 0):
50 break
51 Matrix.delta= Matrix.deltan
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Now we also show one of the SampleScript.py. In particular it is the one for skyrmion-
vortex pairs.

1 import numpy as np
2

3 from SCF_BDG import MakeMatrices, Plot, RelaxCPU
4

5 Matrix=MakeMatrices.MakeMatrix()
6 p = Plot.Plot()
7 p.ClearFolder()
8

9 # =============================================================
10 #Initialize Matrix
11

12 #Set max iterations and error (in pairing potential):
13 Matrix.Nmax=30
14 Matrix.Maxerror= 0.00001
15

16 #System size parameters:
17 Matrix.Nx=23
18 Matrix.Ny=23
19

20 #System parameters (dimensionless):
21 Matrix.alphaR= 0.5 # Rashba SOC
22 Matrix.mu= -4 # Chemical potential
23 Matrix.h0= 0.4 # strength of exchange field
24 Matrix.thermE= 0.001 #thermal energy, kB*T
25 Matrix.epsilonD= 2 #Debye frequency
26 Matrix.bx=0#bx=0 (open BCs along x); bx=1 (periodic BCs along x)
27 Matrix.by=0
28

29 #Make magnetic skyrmion texture:
30 Matrix.Sq=1
31 Matrix.Sw=1
32 NxMid= int((Matrix.Nx-1)/2)
33 NyMid= int((Matrix.Ny-1)/2)
34 Matrix.Srx= [NxMid]# center of skyrmion
35 #Matrix.Srx= [NxMid-3,NxMid+3] #for 2 Skyrmions
36 Matrix.Sry= [NyMid]
37 #Matrix.Sry= [NyMid-3,NyMid+3] #for 2 Skyrmions
38 Matrix.randPointsX= 4#distance from boundary of sample to ferromagnetic

block
39 Matrix.randPointsY= 4
40 Matrix.thetaSkyrm= 0*np.pi/2 # thetaSkyrm= 0 (Neel skyrmion); thetaSkyrm=

pi/2 (Bloch skyrmion)
41 Matrix.MakeSkyrmTextures() # for homogeneous magnetization Matrix.

MakeFerroBlock()
42

43 #Initialize pairing potential:
44 Matrix.g= 5.0 #attractive coupling strength
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45 Matrix.delta= np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous
order-parameter field

46 Matrix.Vq=1.0 #vorticity
47 Matrix.thetaVortex= 0*np.pi/2 # thetaVortex= 0 ("Neel" vortex);

thetaVortex= pi/2 ("Bloch" vortex)
48 Matrix.Vrx= [NxMid] #Position of vortex
49 #Matrix.Vrx= [NxMid-3,NxMid+3] #for 2 vortices
50 Matrix.Vry= [NyMid] #Position of vortex
51 #Matrix.Vry= [NyMid-3,NyMid+3] #for 2 vortices
52 Matrix.MakeVortices() #Insert a vortex in the pair potential
53

54 #Make constant matrices:
55 Matrix.MakeConstantMatrices()
56 Matrix.MakeHMatrix()
57

58 # =============================================================
59 # Relax and save result
60

61 RelaxCPU.RelaxPlot(Matrix,p)
62

63 #Print the lowest energy states
64 N_2=int(len(Matrix.EigenValues)/2)
65 print(’\n’)
66 print(’lowest energy values:\n’)
67 print(np.real(Matrix.EigenValues[N_2-5:N_2+5]))
68 print(’\n’)
69

70 #Save data:
71 Matrix.Save("Matrix")
72 p.ExportMagnetisationProfileVTK(Matrix)
73 p.DensityPlotMajoranasCombined(Matrix,0)
74 p.DensityVectorPlotDelta(Matrix,0)

Last but not least, we also show a sample file how we did the phase diagrams in
LowestEnergyMode.py.

1 import numpy as np
2 import sys
3 import imp
4 from joblib import Parallel, delayed
5 import multiprocessing
6 from tqdm import tqdm
7 from SCF_BDG import MakeMatrices, RelaxGPU
8

9 def processInput(h0,mu):
10

11 Matrix=MakeMatrices.MakeMatrix()
12

13 # =============================================================
14 #Initialize Matrix
15
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16 #Set max iterations and error (in pairing potential):
17 Matrix.Nmax=30
18 Matrix.Maxerror= 0.00001
19

20 #System size parameters:
21 Matrix.Nx=60 #should be an odd (prime) number
22 Matrix.Ny=11 #should be an odd (prime) number
23

24 #System parameters (dimensionless):
25 Matrix.alphaR= 0.3 # Rashba SOC
26 Matrix.mu= mu # Chemical potential
27 Matrix.h0 = h0 # strength of exchange field
28 Matrix.thermE= 0.001 #thermal energy, kB*T
29 Matrix.epsilonD= 2 #Debye frequency
30

31 #Make magnetic skyrmion texture:
32 Matrix.randPointsX = 2 #distance from boundary of sample to

ferromagnetic block
33 Matrix.randPointsY = 5
34 Matrix.MakeFerroBlock()
35

36 #Initialize pairing potential:
37 Matrix.g= 5.0 #attractive coupling strength
38 Matrix.delta= 1*np.ones(Matrix.Nx*Matrix.Ny,dtype=complex) #Homogenous

order-parameter field
39

40 #Make constant matrices:
41 Matrix.MakeConstantMatrices()
42 Matrix.MakeHMatrix()
43

44 RelaxGPU.RelaxGPU_NP(Matrix)
45 DeltaMatrix = Matrix.MapFromVectorToMatrix(Matrix.delta)
46 return [Matrix.EigenValues[int(len(Matrix.EigenValues)/2)],np.mean(abs(

DeltaMatrix[Matrix.randPointsX:Matrix.Nx-Matrix.randPointsX,Matrix.
randPointsY:Matrix.Ny-Matrix.randPointsY]))]

47

48 # =============================================================
49 # Relax and save result
50

51 h0 = np.linspace(0,3,30)
52 mu = np.linspace(-6,0,30)
53

54 result = Parallel(n_jobs=4)(delayed(processInput)(h0p,mup) for h0p in
tqdm(h0) for mup in tqdm(mu))

55

56 np.savez("LowestEnergyMode_test",mu,h0,result)

We should mention that we calculated the phase diagram in steps of 0.1 for h∗0 and
in 0.2 steps for µ∗. The resources needed to do this was 4 cores of CPU and 3-4 GB
of graphic card memory. With that we needed 6-12 hours to calculate the diagram
depending on the system we considered.
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A.4. Relaxation

Here we show the relaxation progress of a skyrmion-vortex pair shown in chapter 4.6.
We see in figure A.1 that from ξ = 10−4 to ξ = 10−5 there is only a small change in the
total energy E∗tot as well as in the superconducting gap ∆∗. Because of this we chose
ξ = 10−4 as a termination condition for the relaxation.

(a) initial, E∗tot = 4449.804150 (b) ξ = 10−1, E∗tot = 4252.748002

(c) ξ = 10−2, E∗tot = 4250.125666 (d) ξ = 10−3, E∗tot = 4249.886317

(e) ξ = 10−4, E∗tot = 4249.857121 (f) ξ = 10−5, E∗tot = 4249.854824

Figure A.1.: Relaxation progress of a skyrmion-vortex pair.
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A.5. Procedure for the phase diagrams

In this chapter we explain how the phase diagram in chaper 4.3 was done. We will also
explain why only in one phase diagram we could add the condition for being topological
into the plot. Then we also address the problem that we can not include conditions in
every phase diagram.
In order to see where the system is topological we plotted the lowest energy mode of
the system since it is assumed that this goes to zero inside the topological region. The
plot showing this can be seen in figure A.2 (a) and (b). We chose to take small steps
in the parameters in the order of 0.1. With that we are able to see a pretty clear
separation between topological and non topological. The system does not converge in
the same manner for different parameter sets which results in small fluctuations inside
the topological region. These fluctuations also stay after we interpolated the data to
get a smoother picture.
Next we added the condition in equation 4.3 inside the plot. For that we first analyse
the superconducting gap |∆∗| inside the ferromagnetic region. We chose the same steps
as before and plot it with and without interpolation in figure A.2 (c) and (d). There
we can see that the superconducting gap is higher the lower the magnetic field h∗0 and
the higher the chemical potential µ∗ is. This makes sense since higher magnetic fields
destroy the superconductivity and lower chemical potential means that less bands are
occupied resulting in a lower superconductivity. Next we use the condition to produce
the plot in figure A.2 (e) and (f). There the green region means that we are topological
and the purple region means that we are not topological. The shape shown in this plot
was then interpolated and the border was drawn inside the plot with the lowest energy
mode. Another possibility to analyse where the system is topological is to consider
specific regions in the ferromagnet instead of the whole ferromagnet.
Finally, we discuss the problems with the condition for the other configurations. For
the Kitaev Chain on a two dimensional superconductor in chapter 4.2 the condition
in equation 3.11 does not apply here since we consider two different shapes for the
ferromagnet and the superconductor. In [32] they derived a condition using the Pfaffian
of the matrix but this condition also does not to apply for this system. It is only for a
fully one dimensional system as Cadez et al. mentioned. The only possibility to get the
right condition would be to calculate the Pfaffian of the considered matrix directly but
we were not able to do this in the limited time. For the vortex, skyrmion and skyrmion-
vortex pair system in chapter 4.4, 4.5 and 4.6 we occured a different problem. Since
these systems are not translationally invariant, we cannot change to momentum space.
Since the condition in 3.11 was derived by going to momentum space it is not applicable.
Also, the method of calculating the pfaffian Cadez et al. used in [32] considered going
to momentum space. However, it could be that there is a way to get the condition from
the pfaffian of a real space matrix but we could not find one during this thesis. As a
result this means that we need to derive a general condition for being topological in
real space for these systems.

93



A. Appendix

(a) without interpolation
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(c) without interpolation
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(e) without interpolation
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Figure A.2.: The first two pictures show the lowest energy mode ((a) without interpolation
and (b) with interpolation). In (d) and (e) we show the mean value of the superconduct-
ing gap ∆∗ inside the ferromagnetic region without and with interpolation respectively.
Then we show when the system is topological (green) and not topological (purple) in (b)
and (c).
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