
Critical domain wall behavior in
chiral magnetic nanowires
induced by spin polarized

currents

from

Nils Sommer

Master Thesis in Physics
submitted to the Department of Physics, Mathematics and Computer Science

(FB 08)
of Johannes Gutenberg-Universität Mainz

on 2nd of September 2019

last correction on 23rd of September 2019

1st Review: Dr. Karin Everschor-Sitte
2nd Review: Prof. Dr. Friederike Schmid



Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Mainz, den 23. September 2019

Nils Sommer
TWIST
Institut für Physik
Staudingerweg 7
Johannes Gutenberg-Universität D-55099 Mainz
nsommer@students.uni-mainz.de



Abstract
The controllable creation and manipulation of magnetic domain walls by electrical
currents is an innovative process for the development of a new generation of magnetic
memory devices. A recent paper presented a proof of concept of a method for con-
trollable creation of domain walls in a ferromagnetic nanowire. An applied electrical
current above a critical threshold in a nanowire with a fixed magnetization at the
edge injects domain walls periodically. It was considered for the ferromagnetic wire
a minimal model with only exchange interaction and uniaxial anisotropy along the
wire. No twisting terms, such as Dzyaloshinskii-Moriya interaction (DMI) and dipole-
dipole interaction were considered. It was predicted that these contributions could
significantly reduce the required electrical current.

In this thesis we investigate the influence of additional Dzyaloshinskii-Moriya interac-
tion on the creation and behavior of magnetic domain walls. The inversion symmetry
broken by the DMI causes the existence of two critical current densities depending
on the type of domain wall. Further, we show that the critical current density has
a linear dependence on the DMI strength. We analyze the interaction between two
domain walls and show that DMI facilitates the annihilation of both domain walls
with each other.

We also investigate the domain wall creation by spin orbit torques and show that
the critical current density depends linearly on the anisotropy strength and decreases
quadratically with the DMI strength.

In addition, we perform micromagnetic simulations to support our theoretical calcu-
lations.

We show that the additional twisting term DMI as well as spin orbit torques can
reduce the critical current threshold. It facilitates the creation of domain walls with
lower current densities and thus reduces the heating of possible devices by the electric
current.

iii



Kurzzusammenfassung
Das kontrollierte Erzeugen und Manipulieren magnetischer Domänenwände durch
elektrische Ströme ist ein innovatives Verfahren, welches insbesondere Anwendung
bei der Entwicklung neuer magnetischer Speichersysteme findet. In einer kürzlich ver-
öffentlichten Publikation wurde ein neues Verfahren zur kontrollierten Erzeugung von
Domänenwänden in einem ferromagnetischen Nanodraht vorgestellt. Die erste Ma-
gnetisierung des Drahtes wurde senkrecht zum Draht fixiert. Durch einen angelegten
elektrischen Strom können an der fixierten Magnetisierung Domänenwände erzeugt
werden, sofern die Stromstärke über einem kritischen Wert liegt.

Für den ferromagnetischen Draht wurde ein simples Modell angenommen, welches nur
Austauschwechselwirkung und uniaxiale Anisotropie entlang des Drahtes beinhaltet.
Terme, die eine verdrehende Wirkung auf die magnetische Textur haben, wie zum Bei-
spiel Dzyaloshinskii-Moriya-Wechselwirkung (DMI) oder Dipol-Dipol-Wechselwirkung,
wurden nicht berücksichtigt. Es wurde jedoch vermutet, dass diese Beiträge die erfor-
derliche elektrische Stromstärke deutlich reduzieren können.

In dieser Masterarbeit untersuchen wir den Einfluss zusätzlicher Dzyaloshinskii-Moriya-
Wechselwirkung auf die Erzeugung und das Verhalten von magnetischen Domänen-
wänden im Nanodraht. Unsere Ergebnisse zeigen, dass die durch die DMI gebrochene
Inversionssymmetrie dazu führt, dass zwei kritische Stromdichten vorhanden sind,
welche sich je einem der beiden Domänenwandarten zuordnen lassen. Darüber hinaus
zeigen wir, dass die kritische Stromstärke, welche für die Erzeugung von Domänen-
wänden notwendig ist, eine lineare Abhängigkeit von der DMI-Stärke aufweist. Weiter
analysieren wir das Verhalten der Domänenwände nach ihrer Erzeugung und untersu-
chen dabei insbesondere die Wechselwirkung zwischen zwei Domänenwänden. Unsere
Ergebnisse zeigen, dass DMI die Vernichtung beider Domänenwände untereinander
erleichtert.

Eine weitere Methode, welche wir in dieser Arbeit untersuchen, ist die Erzeugung
von Domänenwänden mithilfe von Spin Orbit Torques. Wir zeigen, dass die kritische
Stromstärke linear von der Stärke der Anisotropie abhängt und quadratisch mit der
DMI-Stärke abnimmt.

Ergänzend zu unseren Rechnungen führen wir mikromagnetische Simulationen durch,
um unsere theoretischen Vorhersagen zu unterstützen.

Unsere Ergebnisse zeigen, dass die zusätzliche DMI sowie Spin Orbit Torques den
kritischen Stromwert reduzieren können. Beide Verfahren erleichtern die Erzeugung
von Domänenwänden durch geringere notwendige Stromdichten und könnten so die
Erwärmung möglicher Geräte in späteren Anwendungen reduzieren.
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1. Introduction

A central topic in spintronics is the manipulation of magnetic textures. A special
interest is on the creation and manipulation of domain walls by electric currents
[1, 2, 3, 4, 5, 6, 7] to create new types of magnetic memory devices like racetrack
memories [8, 9, 10].

In recent works, a new method for the controllable and periodic creation of magnetic
textures was discovered [11, 12, 13, 14]. While most of them concentrate on two
dimensional textures, i.e. skyrmions, the mechanism is possible for one-dimensional
magnetic systems, i.e. domain walls. In reference [11] the authors demonstrate
that domain walls can be periodically injected into magnetic nanowires just by the
interplay of an electric current and a local inhomogeneity. The authors consider the
following set-up, especially for the analytic treatment. A model of a one dimensional
wire containing exchange interaction and anisotropy along the wire. The magne-
tization at the beginning of the wire is fixed along a perpendicular direction, and
the magnetization at infinity orients along the easy axis. The authors showed that
domain walls are injected into the nanowire if the current density is above a certain
critical value and below the ferromagnetic instability. Furthermore, the period by
which the domain walls are injected can be controlled by the current strength.

In this thesis we expand the predictions to a system with additional Dzyaloshinskii-
Moriya interaction (DMI). We analyze the effect of DMI on the critical current
density and on the behavior of the domain walls after their creation. DMI breaks the
symmetry of the two possible domain walls which can occur in the wire. While DMI
decreases the velocity and the critical current density for one type of domain wall, it
increases these values for the other domain wall type. Further, DMI ease that two
domain walls annihilate with each other.

We also investigate the domain wall creation by spin orbit torques. We analyze the
process in a wire with and without DMI and show that the critical current density
has a linear dependence on the anisotropy strength and decreases quadratically with
the DMI strength.

In addition to our analytic calculations we perform micromagnetic simulations and
compare the numeric results to our theoretical predictions.

This thesis is divided into five parts. In the first two parts we give a short introduction
on micromagnetism and domain walls, and review the main results from reference [11].
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1. Introduction

The third part is about the domain wall creation and their behavior in a nano wire
with additional Dzyaloshinskii-Moriya interaction. The last two parts are about the
domain wall creation by spin orbit torques, with and without the presence of DMI.
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2. Micromagnetic interactions and
dynamics

2.1. Micromagnetic model of a ferromagnet
In the micromagnetic model of ferromagnetism the state of a magnetic material is
described by the vector field of the magnetizations M [15, 16]. In the ferromagnetic
state the magnetization is locally saturated to its saturation magnetization Ms. In
this thesis we use the normalized magnetization

m = M

Ms
. (2.1)

For the description of a ferromagnet we use two major interactions for the magnetiza-
tions. An expansion of the Heisenberg model of the neighboring spin-spin interaction
yields to an exchange interaction between neighboring magnetizations. The Hamilto-
nian of this exchange interaction is [17]

Hex = −J2
∑
i,j

mi ·mj (2.2)

where J is the exchange constant and mi, mj are nearest neighbor magnetizations.
The energy is minimized if mi and mj are parallel (J > 0) or antiparallel (J < 0).
For the case where J is negative the order of the magnetization is alternating and
the material gains antiferromagnetic properties. For a positive J all magnetizations
aligns parallel and the material is ferromagnetic [18].

Several material conditions, like shape of the ferromagnet, interactions of the magneti-
zations with the crystal lattice or external magnetic fields, lead to a preferred direction
for the magnetization orientation. This effect is called anisotropy. The preferred ma-
gnetization direction is the easy axis and it costs energy to deflect magnetization out
of this direction. In a system there can be several easy axes, i.e. systems with cubic
anisotropy have an easy axis in every three directions of space. In this thesis we focus
on a system with only one easy axis. The energy of this interaction reads as [17]

Hani = −λ
∑
i

(mi · n)2 (2.3)

where λ > 0 is the anisotropy constant and θi the unit vector of the easy axis.
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2. Micromagnetic interactions and dynamics

The energy F of this system is given by the sum of all interactions

F = Hex +Hani +Hother . (2.4)

where Hother represents all other possible interactions, i.e. dipole-dipole interaction,
interaction with external magnetic fields or Dzyaloshinskii-Moriya interaction.

2.2. Dzyaloshinskii-Moriya interaction
In materials with broken inversion symmetry an additional exchange interaction occurs
known as Dzyalischinski-Moria interaction (DMI)[19, 20, 21]. The Hamiltonian of this
interaction is

HDMI = −D ·
∑
i,j

mi ×mj . (2.5)

This Hamiltonian is minimized if the two nearest neighbor magnetizations mi and
mj are perpendicular to each other, and the cross product of both is parallel to the
DMI vector D. DMI induces a rotation of the magnetization and the DMI vector
defines the rotation axis.

The origin of the broken inversion symmetry can be either a lattice structure with
no inversion symmetry or an interface between two materials with different lattice
structures, so that the lattice is not inversion symmetric at the interface between the
materials. The first type is known as bulk induced or Bloch type DMI the other type
as surface induced or Néel DMI. Especially, for surface induced DMI the DMI vector
is always in the plane of the interface.

2.3. Magnetic domain walls
We now consider a ferromagnetic material with exchange interaction (J > 0) and
uniaxial anisotropy (only one easy axis). Obviously, the ground state of the system
is a set-up where all magnetizations point in the same direction and along the easy
axis. The magnetizations can point either in positive or negative direction of the easy
axis, so that there are two possible ground states. Especially, there are metastable
states where both types of ground states exist. The areas where the magnetizations
points parallel or antiparallel to the easy axis are magnetic domains and between two
different domains there is a magnetic domain wall. The domain wall characterize as
part of the ferromagnet where the magnetization direction changes smoothly from the
orientation of one domain to the orientation of the other domain. The typical width
of a domain wall is given by the square root of the ratio of exchange and anisotropy
constants [22, 18]
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2. Micromagnetic interactions and dynamics

figure 2.1.: On the left side is a Bloch domain wall. a) shows the side view on a
Bloch wall b) is a tilted view. The magnetization changes its direction
perpendicular to the domain wall direction. On the right side is a Néel
type domain wall where c) shows the side view and d) the tilted view. The
magnetization changes in the same direction as the domain wall expands.
The red areas are the both domains. The blue color shows the y component
of the magnetization.

∆ =

√
J

2λ . (2.6)

For a set-up where the easy axis is perpendicular to the direction of domain wall,
the magnetization direction can change its direction either in the same direction like
the direction of the domain wall or perpendicular to it. The first case is a Néel type
domain wall the second a Bloch type domain wall. Both types of domain walls are
shown in figure 2.1.

If the easy axis is parallel to the direction the domain wall there are also two different
types of domain walls. If the magnetization directions of both domains point to each
other there is a head to head domain wall between them. If the magnetizations of
both domains are pointing away from each other there is a tail to tail domain wall.
Both types are shown in figure 2.2.

An effective description of a domain wall is to parameterize it by its position X0,
where the position X0 represents the middle of the domain wall. For the head to head
and tail to tail domain walls we can add an angle φ0 which represents the angle of
the domain wall to a free chosen axis which is perpendicular to the easy axis. The
parametrization are shown in figure 2.2 for a tail to tail domain wall [3, 7, 17, 23, 24].
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2. Micromagnetic interactions and dynamics

figure 2.2.: A tail to tail and a head to head domain wall in a ferromagnetic material
with uniaxial anisotropy. In this set-up a tail to tail domain wall originates
if the the magnetization direction changes from a left oriented domain to a
right oriented domain. If the magnetization direction changes from a right
oriented domain to left oriented domain there is a head to head domain
wall. On the right side is a parametrization to describe a domain wall.
The position X0 of the domain wall is defined by the coordinate of the
middle of the domain wall. For a head to head or a tail to tail domain wall
the orientation of the middle of the domain wall can be described by its
relative angle φ0 to the ẑ axis.

2.4. Dynamics of magnetization
2.4.1. Landau-Lifshitz-Gilbert equation
The dynamics of the magnetization is described by the Landau-Lifshitz-Gilbert (LLG)
equation [25, 26]

ṁ = −γm×Heff + αm× ṁ+ τ (2.7)

where γ is the gyromagnetic ratio, Heff an effective magnetic field, α the Gilbert
damping and τ a torque acting on the magnetization m.

The first part of the equation describes the precession of the magnetization around
the effective magnetic fieldHeff . The effective magnetic field in a ferromagnet is given
by the internal field and external magnetic fields. The internal magnetic field is a field
generated by the magnetization and especially describes the interaction between them

Heff = H internal +Hexternal = −M−1
s

δF [m]
δm

+Hexternal. (2.8)

The second part of the LLG describes the damping of the precession around Heff .
The magnetization aligns parallel to the effective magnetic field after a certain time
and α is the Gilbert damping constant.

The third part of the LLG describes external torques generated by spin currents, for
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2. Micromagnetic interactions and dynamics

figure 2.3.: On the left is a set-up for a spin transfer torque device. An unpolarized
current is injected into the device. A layer with a fixed magnetization
direction polarizes the current so the electron spins align parallel to its
magnetization. A non magnetic layer separates the magnetic layer from
another one. The magnetizations of these layers are not parallel to each
other so the spin polarized current acts a torque on the magnetization in
the second layer. On the right is a set-up for a spin orbit torque device.
There is a non magnetic layer with a magnetic layer on the top. The non
magnetic layer has large spin orbit coupling and polarize an electric current
by the spin Hall effect. The spin current is injected perpendicular into the
magnetic layer. j is the electric current, vs the spin current velocity and σ
the spin current polarization.

example.

2.4.2. Spin torques
Every electron has in addition to its charge another quantity called the electron spin.
This spin has an orientation and can be polarized in a certain direction. An electric
current can be spin polarized so that all spins of the conduction electrons are oriented
in the same direction.

In non-magnetic conductors the spins of the conduction electrons are randomly
oriented. However, in ferromagnetic materials with a fixed magnetization directi-
on the spins are forced to align parallel to local magnetizationdirection and the
electric current becomes spin polarized. This process is shown in figure 2.3 a) in
the left magnetic layer. Another possibility to create a spin polarized current is
using the spin orbit interaction in materials with large spin orbit coupling. The
spin hall effect [27, 28, 29] or the Rashba effect [30, 31] separate electrons with
opposite spin polarization. This induces a spin polarized current at one surface of
the material and on the opposite surface a current with opposite polarization direction.

7



2. Micromagnetic interactions and dynamics

If a spin polarized current is injected to a magnetic material with a different magne-
tization direction than the polarization of the spin current, the spins of the electrons
align again parallel to the local magnetization direction. The electron spin has pro-
perties of an angular momentum and due to conservation of angular momentum the
electrons act a torque on the magnetizations in the material. If the direction of the
magnetizations is not fixed by some reasons the spin polarized current will change the
magnetization direction to the direction of the spin current polarization. The torque
an spin polarized current acts on a magnetization is given by

τ = τFLm× σ + τDLm× (m× σ) . (2.9)

where τFL is the prefactor of the field like term, τDL the factor of the damping like
term and σ the polarization direction of the spin current[31, 32, 33, 34, 35].

There are two different spin torques. The spin transfer torque (STT)[32, 33, 36] and
spin orbit torque (SOT) [37, 38, 39, 40]. For the spin transfer torque the electric
current is spin polarized by passing a fixed magnetic layer before entering the other
magnetic layer with changeable magnetization direction. The set-up is a spin valve
which is shown in figure 2.3 a). For a continous spin valve where the magnetization
direction changes smoothly its direction the equation for the spin transfer torque can
be simplified. The spin transfer torque reads then

τSTT = − (vs · ∂) ·m+ βm× (vs · ∂) ·m (2.10)

where β is damping constant of the damping like torque and vs is the spin velocity
which represents the spin polarized current. The relation between spin velocity and
electric current is given by j = eMs

PµB
vs where e is the electron charge, P the spin

polarization and µB the Bohr magneton [3, 11].

A possible set-up for a spin orbit torque device is shown in figure 2.3 b). The current
is spin polarized by the spin Hall effect in the lower and non magnetic layer and it
is injected perpendicular into magnetic layer on the top. The difference to the spin
transfer torque is that the spin polarization does not depend on the local magnetization
direction of the magnetic layer. Especially, in our case the spin polarization is given
by

σ = j × ẑ (2.11)

where j is the electric current and ẑ the normal of the surface between the non
magnetic and magnetic films.

2.5. Dynamics of domain walls
The two spin torques (STT, SOT) can move domain walls in a ferromagnetic material.
For the moment we are focusing on the movement due to spin transfer torque.
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2. Micromagnetic interactions and dynamics

figure 2.4.: The movement of a domain wall by a spin polarized current. The electron
current is flowing from left to right. The spin of the electrons align parallel
to the local magnetization direction. At the domain wall the direction of
the electron spin changes its direction. Because of conservation of angular
momentum the direction of the magnetizations of material also change
their directions so the domain wall moves in the same direction like the
electron current flows.

As it is described in the section 2.4.2 spin polarized currents act a torque on the
magnetizations if their orientation is not parallel to the spin polarization direction.

To understand the process of domain wall movement we change the perspective to
the perspective of an electron. Imagine a set-up of a one dimensional ferromagnet
with two domains where the magnetizations of the first domain are pointing to the
left and in the second domain they are pointing in right direction. Between these two
domains there is a domain wall where the magnetizations change their orientation
smoothly from left to right. (see figure 2.4)

A conduction electron passes the first domain, then the domain wall and finally
the second domain. The spin of the electron aligns always parallel to the local
magnetization direction. When the electron passes the domain wall it spin changes
its direction from left to right. Due to the conservation of angular momentum, the
orientation of each magnetization in the domain wall has to change slightly to the
left, so that the domain wall moves slightly to the right. Each passing conduction
electron moves the domain wall a bit more, so that an electric spin polarized current
moves the domain wall in the same direction as the current flows. (see figure 2.4)

The speed of a domain wall in a ferromagnetic material with exchange interaction,

9



2. Micromagnetic interactions and dynamics

figure 2.5.: Different ground states for a one dimensional nanowire with exchange in-
teraction, anisotropy and DMI. In all wires the first magnetization is fixed
in ẑ direction. The blue and red colors show the y component of the ma-
gnetization. Blue coloration is a positive y component red means negative
component. a) shows the wire without DMI. The magnetizations change
their direction slightly from the fixed direction to the direction of the easy
axis. So a 90 degree domain wall is formed after the fixed magnetization.
b) shows the nanowire with small DMI strength below the critical strength
D2 < D2

c = 2Jλ. The DMI yields to a twist of the magnetization in ŷ direc-
tion behind the fixed one. c) shows the nanowire where the DMI strength is
larger than the critical value. Here the magnetization form a spiral around
the wire with a pitch of 2π J

D . For b) and c) the direction of the twist and
winding depends on the sign of the DMI strength D.

anisotropy and DMI is given by [22]

Ẋ0 = 1 + αβ + (α− β) Γ∆0
1 + α2 vs (2.12)

where Γ = D/J is the ratio of DMI strength and exchange constant, and ∆−2
0 =

∆−2 + Γ2 with ∆ as the domain wall width without DMI (see eq. 2.6).

2.6. Set-up
In this thesis we consider a set-up of one dimensional semi-infinite ferromagnetic
nanowire oriented along x̂ direction with exchange interaction and uniaxial anisotropy
along the wire. The first magnetization of the wire is fixed in ẑ direction. In section
2.1 and 2.2 we describe the energy for a discrete model. For a continuous model with
bulk induced DMI the energy reads as

F [m] =
∫ ∞

0
dx

[
J

2 (∂xm)2 + λ
(
1−m2

x

)
+Dm · (∇×m)

]
(2.13)

where D is the DMI strength [11, 22].

For a system without DMI (D = 0) there is only exchange and anisotropy. The
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2. Micromagnetic interactions and dynamics

figure 2.6.: There are two possible ground states for the system. The first magnetiza-
tion is fixed the other magnetization can either align in parallel to the easy
axis or anti parallel to it. The energy for both states is the same.

anisotropy prefers that the magnetizations align parallel to the easy axis. Due to
exchange interaction the magnetization change smoothly their direction from the
fixed direction ẑ to the x̂ direction so a 90 degree domain wall arises at the beginning
of the wire (see figure 2.5 (a)).

For a set-up with DMI there is an interplay between exchange interaction and DMI.
The DMI prefers a perpendicular angle between nearest neighbor magnetizations but
the exchange interaction tries to align them parallel. This leads to a spiral structure
with a pitch 2π J

D . Furthermore there is a critical value of the DMI strength D2
c = 2λJ

which separates two phases of the set-up (figure 2.5(b) and (c))[22, 41].

For DMI strength above this critical value the system is in the helical phase where
the magnetizations form a spiral around the wire (figure 2.5 (c)). Below the critical
value the system looks quite similar to the set-up without DMI. The magnetization
direction changes smoothly from ẑ direction to x̂ direction. But due to DMI there is
a small twist of the magnetization out of the x-z plane in the gradient after the fixed
magnetization (figure 2.5(b)).

Furthermore, the ground state of the system below the critical DMI strength is dege-
nerate. The magnetization at infinity can either point along the positive x̂ direction
or in negative x̂ direction. Both states are shown in figure 2.6.
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3. Domain wall creation without
Dzyaloshinskii-Moriya interaction by
spin transfer torque

In this chapter we review the results of reference [11]. In this publication the creation of
magnetic domain walls by spin transfer torque in nanowires with exchange interactions
and anisotropy along the wire is predicted. It is the same set-up like the set-up without
DMI which was described in section 2.6. The two ground states are described in the
previous section and they are shown in figure 2.6 a) and b). For the analytics the
authors focused on the ground state with mx = 1 for x → ∞ (figure 3.1). The
calculation for the other ground state is analog. The free energy of the system is given
by

F [m] =
∫ ∞

0
dx

[
J

2 (∂xm)2 + λ
(
1−m2

x

)]
. (3.1)

Applying a small spin polarized current the magnetizations behind the fixed magneti-
zation are twisted out of the x-z plane (fig. 3.1 (2)), but for a constant current density
the system is still stable. As the current strength increase, the twist of the magneti-
zation becomes larger. Above a critical current density jc = eγ

PµB

√
2λJ the system

becomes unstable and domain walls are injected periodically into the wire (fig. 3.1 (3)).

The authors showed that the creation of domain walls is periodic with a period of

T =
√

2πe2JMsγ

j2
cP

2µ2
b

√
jc

j − jc
. (3.2)

After the creation the domain walls are moving through the wire due to spin transfer
torque.

The bachelor thesis of Nils Sommer [42], which is based on this reference [11], deals
with the influence of the orientation of fixed magnetization. The results show that
the critical current density has a minimum if the magnetization is fixed perpendicular
to the wire.
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3. Domain wall creation without DMI by STT

figure 3.1.: Set-up of a ferromagnetic wire. The first magnetization (colored black) is
fixed perpendicular to the wire. (1) is the ground state where the magneti-
zations orient themselves due to exchange interaction and anisotropy. (2)
shows the state with an applied current j which is smaller than the critical
current value j < jc. The magnetizations after the fixed magnetization are
twisted out of the x-z plane. The coloration of the magnetization defines
the y-component. Blue is in positive y-direction red in negative. (3) shows
the unstable state where the current strength is above its critical value
j > jc and domain walls are created periodically. A domain wall is shown
which was created at the beginning and is now moving through the wire.
This figure was created in style of the figure 1 from ref. [11].
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4. Domain wall creation with
Dzyaloshinskii-Moriya interaction by
spin transfer torque

In this chapter we investigate the creation of domain walls and their behavior in a
ferromagnetic nanowire due to additional Dzyaloshinskii-Moriya interaction. In the
first part we calculate the new critical current density and demonstrate the influence
of DMI on the created domain walls. In the second part we compare our analytic
results to micromagnetic simulations.

In the following chapters we use similar calculations to determine the critical cur-
rent value. Therefore we show a detailed calculation of the critical current density in
this chapter. In the other chapters we only describe the main steps which show the
important differences between the calculations.

4.1. Ferromagnetic instability
Besides the critical current for the domain wall creation there is a second critical
current value for the ferromagnetic instability. For electric currents above this critical
current value the magnetic material loses its ferromagnetic properties [11][43]

To calculate the ferromagnetic instability we use the implicit form of the Landau-
Lifshitz-Gilbert equation with spin transxfer torque

(
1 + α2

)
ṁ = −γm×Heff−αγm×(m×Heff)−(1− αβ) vs∂xm+(β − α) vsm×∂xm.

(4.1)
The effective magnetic field reads

Heff = −M−1
s

δF [m]
δm

= 1
Ms

(
J∂2

xm+ 2λmxx̂+ 2D ((∂xmz) ŷ − (∂xmz) ẑ)
)
. (4.2)

The magnetic state m = m0 + s is the ferromagnetic ground state m0 = x̂ plus a
small perturbation s with s2 → 0 and x̂ ⊥ s. For s we use a spin wave ansatz

s = ei(kx−ωt) (f ŷ + gẑ) . (4.3)
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4. Domain wall creation with DMI by STT

If Im (ω) > 0 the spin wave increases its amplitude in time and the system becomes
unstable. Further, if Im (k) 6= 0 the amplitude of the spin wave increases in space so
we have two conditions for the stability of our system.

Using this perturbation ansatz, the implicit LLG (4.1) gives us

0 =
[
a b
−b a

]
s (4.4)

with

a = αγ

Ms

(
2λ+ k2J

)
+ i

[
ω
(
1 + α2

)
− 2kγ
Ms

D − kvs (1 + αβ)
]

b = − γ

Ms

(
2λ+ k2J

)
+ i

[
−2kγ
Ms

D + kvs (β − α)
]
.

To solve the equation (4.4) the determinant of the matrix has to be equal to zero
a2 + b2 = 0. This equation gives us two solutions for ω

ω1 =
[
kvsMs + kvsMsαβ + 2Dkγ + Jk2γ + 2γλ

]
+ i

[
Jαγk2 + (vsMsα− vsMsβ + 2Dγ) k + 2αγλ

]
Ms (1 + α2)

ω2 =
[
kvsMs + kvsMsαβ + 2Dkγ − Jk2γ − 2γλ

]
+ i

[
Jαγk2 − (vsMsα− vsMsβ + 2Dγ) k + 2αγλ

]
Ms (1 + α2) .

The condition Im (ω) < 0 gives conditions for the wavenumbers k1 and k2

−c− id < k1 < −c+ id

c− id < k2 < c+ id

with

c = vsMs (α− β) + 2Dγ
2Jαγ

d =

√
(vsMs (α− β) + 2Dγ)2 − 8Jλα2γ2

4J2α2γ2 .

The second condition that Im (k) = 0 forces that the argument of the square root has
to be equal to zero (d = 0). With this we get a condition for the spin current velocity
vs

γ
(
2α
√

2Jλ−D
)

Ms (α− β) > vs >
γ
(
−2α
√

2Jλ−D
)

Ms (α− β) . (4.5)

Especially, for the case without DMI (D = 0) and (β = 0) the ferromagnetic
instability is twice the critical current vs < 2 γ

Ms

√
2λJ like it was predicted in [11].
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4. Domain wall creation with DMI by STT

For the other ground statem = −x̂ the sign in front of the DMI strength D changes.
That means that DMI increases the critical current density of the ferromagnetic insta-
bility for one ground state while it decreases this value for the opposite ground state.
For a reverse current direction the previously stabilized ground state is now the state
with the lower ferromagnetic stability. In a set-up with at least one domain wall both
ground states are present so the lower current defines the limit for the ferromagnetic
stability.

4.2. Critical current with bulk DMI
In this section we show that the critical current for the domain wall creation in a
ferromagnetic wire with DMI is

jc = eγ

PµB

(
±D +

√
2Jλ

)
(4.6)

where e is the electron charge, γ the gyromagnetic ratio, P the spin current polari-
zation, µB the Bohr-magneton and D the DMI strength. The critical current density
depends linear on the DMI strength and for D = 0 the critical current density for the
system without DMI is recovered [11].

For the calculation we use the conservation of linear momentum and angular momen-
tum. These conversation laws lead to constant derivatives of the magnetization in
space at the beginning of the wire.

For our calculations we consider a stable system ṁ = 0 and by this we define a
condition for the value of spin velocity vs. Since there are no dynamics, the damping
parts of the LLG do not contribute. The LLG without damping terms reads

ṁ = −γm×Heff − (vs · ∂) ·m = 0 . (4.7)

The effective magnetic field is (equation (2.13))

Heff = 1
Ms

(
J∂2

xm+ 2λmxx̂+ 2D (∂xmzŷ − ∂xmyẑ)
)
. (4.8)

The wire is one-dimensional, so we only have to consider the x-component of the LLG.
Using the expression for the effective magnetic field, the LLG for the x̂-component is

ṁx = − γ

Ms

(
Jx̂ ·

(
m× ∂2

xm
)
− 2D (mz∂xmz −my∂xmy)

)
− vs∂xmx (4.9)

= ∂x

(
− γ

Ms

(
Jx̂ · (m× ∂xm)−Dm2

x

)
− vsmx

)
= 0. (4.10)
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4. Domain wall creation with DMI by STT

This expression indicates that the term inside the brackets is a conserved quantity.
The value of this constant can be calculated for x→∞ where mx = 1 and ∂xm = 0.
We obtain

γ

Ms

(
Jx̂ · (m× ∂xm)−Dm2

x

)
+ vsmx = vs −

γ

Ms
D . (4.11)

At the beginning of the wire where m = ẑ equation (4.11) gives us the first constant
derivative

− γ

Ms
J∂xmy = vs −

γ

Ms
D (4.12)

∂xmy =
D − vsMs

γ

J
. (4.13)

For the second derivative we have a look on the free energy of the system (equation
(2.13)). If we consider the energy as an action of some model and x as the time we
obtain the Lagrangian of the model

L = J

2 (∂xm)2 + λ
(
1−m2

x

)
+Dm · (∇×m) (4.14)

and the corresponding Hamiltonian

H = ∂L
∂ (∂xm)∂xm− L = J

2 (∂xm)2 − λ
(
1−m2

x

)
. (4.15)

The fact that the Lagrangian does not depend explicitly on the time x implies that
the Hamiltonian is conserved. The conservation constant we can calculate again for
x→∞

J

2 (∂xm)2 − λ
(
1−m2

x

)
= 0 (4.16)

and we get as second constant derivative

(∂xm)2 = 2
J
λ
(
1−m2

x

)
. (4.17)

For the fixed magnetization at the beginning of the wire where m = ẑ and
(∂xm)2 = (∂xmx)2 + (∂xmy)2 the two solutions for (∂xm)2 and ∂xmy (equation 4.13
and 4.17) gives

(∂xmx)2 = 2λ
J
−
(
D − vsMs

γ

J

)2

> 0 . (4.18)

For stable solution ∂xmx ∈ R and (∂xmx)2 > 0. Setting the above equation equal to
zero we can calculate the critical value for vs

vcs = γ

Ms

(
D ±

√
2Jλ

)
. (4.19)
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4. Domain wall creation with DMI by STT

Because of D < Dc =
√

2Jλ the ± sign in front of the root determines the current
direction. For our calculations we consider positive current directions.

Repeating this calculation for the other ground state m = (−1, 0, 0) for x → ∞ we
obtain the solution

vcs = γ

Ms

(
−D +

√
2Jλ

)
. (4.20)

The critical current corresponding to the spin velocities is

jc = eMs

PµB
vcs = eγ

PµB

(
±D +

√
2Jλ

)
. (4.21)

There are two solutions for the critical current depending on the type of the ground
state (figure 2.6) and it defines the sign in front of the DMI strength D. The type
of ground state determines the type of domain wall that will be generated next. So
the critical current is directly correlated to the type of the next domain wall. During
periodic domain wall creation the type of the ground state switches after every
created domain wall. Thus, the critical current density also changes between its two
possibilities after every created domain wall.

Furthermore, if the DMI strength going to its critical value D2
c = 2Jλ the critical

current density reaches the ferromagnetic instability of one ground state.

4.3. Different shedding frequency
As described in chapter 3 the frequency with that domain walls are created is pro-
portional to the square root of the difference between current and critical current
[11]

f = j2
cP

2µ2
B√

2πe2JMsγ

√
j − jc
jc

. (4.22)

For a ferromagnetic wire with DMI there are two different critical current densities
depending on the type of domain wall which has to be created next (see equation
(4.21)). This means that both domain wall types have their own creation time T1 and
T2. Equation (4.22) tells us that the domain wall with the lower critical current has
a higher creation frequency and by this a lower creation period than the other type
of domain wall. During the periodical creation process the type of domain which is
created is alternating. The different creation time for each domain wall type causes
that the initial distance between the domain walls is different. More precisely, there are
two different distances which are alternating due to the alternating types of domain
walls (see. fig 4.1 and fig. 4.2).
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4. Domain wall creation with DMI by STT

figure 4.1.: Periodic Domain wall creation in ferromagnetic wire with DMI. The color
shows the y component of the magnetization (red negative y-component,
blue positive y-component). The tail-to-tail domain wall has the higher
critical current density and by this a longer creation time. Going from left
to right the distance between a head-to-head and a tail-to-tail domain wall
∆X1 is smaller than the distance between the domain walls in opposite
order ∆X2. The distances between the domain walls are not constant in
time due to their different velocities and the interaction between them.

4.4. Domain wall velocity and annihilation
The velocity of the domain walls (see equation (2.12)) depends on the DMI strength.
For small DMI strength we can use a linear approximation

Ẋ0 = (1 + αβ) vs
1 + α2 ±D (α− β) vs√

2Jλ (1 + α2)
. (4.23)

The domain wall velocity depends also on the type of the domain wall which causes
the ± sign of the DMI strength. The tail to tail domain wall has again the plus
sign and the head to head domain wall the minus sign. Interestingly, the domain
wall which is created faster is the domain wall with the smaller velocity. These two
different speeds yield to the case that one domain wall reaches the other one during
their movement in the wire.

Additional to this effect the domain walls interact with each other depending,
among other effects, on their distance and the azimuthal angle between them. We
approximate the interaction by a long distance approximation in an infinit wire. We
assume two rigid domain walls with a separation bigger than the domain wall width
∆. By this only the tails of the domain walls interacts with each other.

At the area between the two domain walls the magnetic state is approximately given
by

m = x̂+m1 +m2 (4.24)

wherem1 andm2 describes the tails of the domain walls withm2
1,2 → 0 andm1,2 ⊥ x̂.

The shape of the tails are given by [22]

m1,2 =
(

0, cos [Γ(x−X1,2) + φ1,2]
cosh [(x−X1,2)/∆0] ,

sin [Γ(x−X1,2) + φ1,2]
cosh [(x−X1,2)/∆0]

)
(4.25)
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4. Domain wall creation with DMI by STT

where X1 and X2 are the position of the domain walls, φ1 and φ2 their rotation
angles measured as angle to the ẑ axis, Γ = D

J and ∆−2
0 = ∆−2 + Γ2.

Using this parametrization of the magnetization the energy reads

F =
∫
dx

[
J

2
(
(∂xm1)2 + (∂xm2)2

)
+D (x̂ · (∇×m1 + ∇×m2))

+J∂xm1 · ∂xm2 +D (m2 · (∇×m1) +m1 · (∇×m2))] .

For the ordering of the domain wall we define X1 < X2 and for the large separation
X1 � −∆ and X2 � ∆. By this we can approximate the cosh function (equation
(4.25)) by

cosh(x)→ ex

2 for x→∞ .

With this we can do an approximation for the shapes of the tails

m1 =
(
0, 2 cos [Γ(x−X1) + φ1] e−(x−X1)/∆0 , 2 sin [Γ(x−X1) + φ1] e−(x−X1)/∆0

)
(4.26)

m2 =
(
0, 2 cos [Γ(x−X2) + φ2] e(x−X2)/∆0 , 2 sin [Γ(x−X2) + φ2] e(x−X2)/∆0

)
.

(4.27)

Using the above approximation we obtain for the interaction part of the energy

Finteraction = −
∫
dx e

−|x1−x2|
∆0

[ 1
4J∆0

(
D2∆2

0 − J2
)

cos (Γ (x1 − x2) + φ2 − φ1)
]
.

(4.28)
This equation shows that the interaction increases exponential with decreasing
distance between the domain walls. The argument of the cos function defines the sign
of the interaction and by this if the interaction is attractive or repulsive. Without
DMI (Γ = 0) the interaction only depends on the relative angle between the two
domain walls φ = |φ2 − φ1| < π. If φ < π

2 the interaction is attractive, for φ > π
2 the

interaction is repulsive.

For a system with DMI the interaction also depends on the separation distance of the
domain walls. As described in section 2.6 the pitch of the spiral due to DMI is 2π

Γ . If
the distance between the domain walls is exactly one spiral length X2 −X1 = 2π

Γ the
energy is minimized for a relative angle φ = 0. For X2−X1 = π

Γ (half a spiral length)
the favored relative angle is φ = π. Note, for this case the interaction is attracti-
ve but for the case without DMI the interaction is repulsive for a relative angle of φ = π
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4. Domain wall creation with DMI by STT

However, both domains move in the same direction but rotate in opposite directi-
on around the wire. Thus, the relative angle has bigger effect on the domain wall
interaction, especially whether the interaction is attractive or repulsive.

4.5. Simulation
In addition to our analytics we perform micromagnetic simulations with the simula-
tion tool MicroMagnum [44]. MicroMagnum uses finite distance method to perform
the time evolution of a magnetic system numerically. It calculates the consecutive
configuration of the magnetization with given time steps according to LLG.

Our simulation code is a python script where we define the material parameters (i.e.
exchange constant, anisotropy strength, DMI strength, saturation magnetisation)
and the set-up. As set-up we use a ferromagnetic wire with 1024 lattice sites. The
magnetization are placed along the x̂ axis with 3 nm lattice constant. To avoid
boundary effects due to DMI [41, 45] we fix the first 100 magnetization in ẑ-direction
by a strong local magnetic field. The value of the parameters we use in our simulation
are listed in the following list.

Parameter Value

Saturation magnetization Ms 6 · 105A/m
Exchange constant J 2.6 · 10−11J/m
Anisotropy strength λ 1 · 104J/m3

DMI strength D
[
−15 10−5, 15 10−5] J/m2

Fixing magnetic field strength 1 · 107A/m
Spin current polarization P 0.56
Current strength ∼ 1012A/m2

The first part of the simulation is to find the ground state of the system. The initial
state is a set of magnetizations where all fixed magnetizations orient along ẑ direction
and all other magnetizations point in positive or negative x̂ direction, depending on
which of the two possible ground states has to be the initial state. The simulation
finds the set with minimal energy via torque minimization. If the biggest change of a
magnetization direction is smaller than 1 deg/ns the relaxation process stops and the
current state is exported as ground state of the system.

The second part of the simulation is the simulation of the system with an applied
current. Our set-up is oriented in positive x̂ direction so the domain walls shall move
in positive x̂ direction. Therefore, we apply a negative current so the electron current
is in positive x̂ direction. Applying a discrete current pulse above the critical current
density is a rapid change in energy and can disrupt the system. To avoid this, we
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4. Domain wall creation with DMI by STT

ramp up the current smoothly from zero to a current slightly above the critical current
density. For the current ramp up we use a cosine function. The current density at time
t is given by

j(t) = j1

(
1.0− cos

(
t
τ π
)

2 , 0, 0
)

(4.29)

where j1 is the final current density and τ current ramp up time. After the time τ the
current density is equal to j1, the current ramp up stops and the current strength is
constant

j(t) = j1x̂ . (4.30)

During the relaxation process, the current ramp up and the simulation with constant
current density the ongoing magnetic state is exported after a chosen time step. As
default we use a time step of 0.1ns. Only if a better time resolution is needed we
decrease the time step.

In the following section we compare the simulation data with our analytics for the
domain wall creation in ferromagnetic wire with DMI by spin transfer torque.

4.5.1. Determination of critical current by squared frequency
In reference [11] the authors determine the critical current by using that the current
density is proportional to the squared creation frequency (equation 4.22). In this sec-
tion we will use the same method to determine the critical current from our simulation.

We simulate the domain wall creation for different DMI strengths in the range of
−15 · 10−5J/m2 to 15 · 10−5J/m2 with a step size of 5 · 10−5J/m2 . For each DMI
strength we simulate the system for different current densities, larger than the critical
current density. Every simulation we perform for four different Gilbert damping α
(α = [0.2, 0.3, 0.4, 0.5]).

To determine the creation frequency we have a look on the dynamics of the 50th
lattice site after the last fixed magnetization. We disassemble the magnetization
vector in two components. One component describes the magnetization along the
wire Mx the other component the perpendicular part to the wire m⊥ = 1 −m2

x. In
figure 4.2 (a) the perpendicular component m⊥ is plotted versus the time. Every
peak represents a passing domain wall. One can see the different creation times T1
and T2 due to the different effects of DMI on the two types of domain walls. We
assume the maximum of the peak as the time when the domain wall passes the
50th lattice site. For every domain wall pair we calculate the difference between
these two times to get all the creation times T1 and T2. The corresponding creation
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figure 4.2.: We executed simulations for different DMI strengths, current densities j
and Gilbert dampings α. For every simulation we analyze the change of
magnetization at the 50th lattice site after the fixed magnetization (a). We
determine the time difference between two domain walls passes the 150th
lattice site. Due to DMI there are two different creation times T1 and T2.
We determined these times several times during a simulation and took the
average value. We obtain for every DMI strength a set of T1 and T2 and the
corresponding current density and Gilbert damping. In (b) the creation
times T2 are plotted versus the currents density and all points with the
same Gilbert damping α are fitted linear. The x axis section represents the
critical current density from the measurements for one Gilbert damping.
As critical current we chose the means value out of the four. The analysis
for the critical current corresponding to T1 is analog.

frequency f1, f2 we calculate by inverting the mean values of the creation times f = 1
T .

In the end we obtain for every DMI strength a data set containing pairs of the
creation time and the corresponding current strength for both types of domain walls.
For one domain wall type and the same value of α the squared creation frequency is
proportional to the current strength. We fit the pairs of squared creation time and
current strength by a line for every value of α (see figure 4.2 (b)). The current density
where f2 = 0 is the critical current density. We calculate the critical current density
for every DMI strength and domain wall type as mean value of the critical current
densities from all four fits. The graphic A.1 shows the determination process.

The results of the critical current densities for different DMI strengths are shown in
figure 4.3. For the set-ups with DMI (D 6= 0) there are two different critical currents,
one for each type of domain wall. For one type of domain wall the critical current den-
sity decreases with increasing DMI strength while the critical current density increases
for the other type of domain wall. Further, there is a difference between our theore-
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figure 4.3.: Results of the simulation and determination of the critical current with the
frequency method. There are two different critical currents for the systems
with DMI. The results from the simulation do not fit well with our theory
what can be explained due to the interaction of the domain walls with each
other.

tical predictions and the simulation result which increases for higher DMI strengths.
We suppose that this difference comes from the interaction between the domain walls.
By this the measured time at the 50th lattice site after the last fixed magnetization
is not the same like the initial time difference during the creation at the last fixed
magnetization. Therefore, there are different results for analysis at different lattice
sites (see Appendix figure A.4).

4.5.2. Determination of critical current by nested intervals
Another possibility to determine the critical current is to use the method of nested
intervals.

To determine if domain walls are created we analyze again the dynamics of a
magnetization in a short distance behind the last fixed magnetization. If the sign of
the x component of this magnetization changes in time a domain wall passed this
magnetization. If there is no domain wall creation the sign of the x component is
constant in time. For current density above but very close to critical current density
the creation time goes to infinity, so we have a resolution limited by the simulation
time. We choose a simulation time of 100ns so we cannot detect domain walls with a
creation time of more than 100ns.

24



4. Domain wall creation with DMI by STT

figure 4.4.: Results of the simulation and determination of the critical current density
with the nested interval method. There are two different critical currents
for the systems with DMI. The intervals of the critical current density have
a range of ∼ 4% and are too small to be seen in this figure. Therefore, we
use dots for the simulation results, located in the middle of the interval.

A second limitation comes from the position where we detect the domain wall
due to the time the domain wall needs to reach this position. At the beginning
of the wire the x components are very small and can change their sign due to
spin wave excitation, so we decided to detect the passing domain walls at the
20th lattice site after the last fixed magnetization. With a speed of more than
100m/s a domain wall reaches the 20th lattice site in less than 1ns so we can detect
domain walls with a creation time of 99ns. The critical current densities in our
simulation are in order of 1012A/m2 so the additional current density we need to crea-
te domain walls in less than 99ns is in the range of 0.2% of the critical current density.

To determine the critical current density via nested intervals we define an interval
±1 · 1012A/m2 around the theoretical value. So for the lower border jlower of the
interval there shall be no domain wall creation but for the higher border jhigher it
should. We simulate the system as described in section 4.5 for both borders of the
interval. If there is no domain wall creation for the lower border but for the higher
border, we simulate the system again for the current strength in the middle of the
interval jmiddle = (jhigher + jlower)/2. If there is no domain wall creation for jmiddle
the critical current is between jmiddle and jhigher. If a domain wall was created the
value is between jmiddle and jlower. By this method we shrink the size of the interval
down to ∼ 4%. Because of the critical current value depending on the ground state
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figure 4.5.: Simulation results for the velocities of both types of domain walls for dif-
ferent DMI strengths. The velocity has a linear dependence on the DMI
strength but is different for both types of domain walls. While DMI incre-
ases the velocity for one type it decreases the speed of the other type.

we simulate the system for both ground states.

The simulation results are shown in figure 4.4. The simulation results are plotted
as dots because the sizes of the intervals are to small to be seen in this figure. In
comparison to our previous method this simulation results matches better to our
analytic predictions.

4.5.3. Domain wall velocity and interaction
Another effect we discussed in our calculation is the domain wall velocity, and the
interaction and annihilation of the domain walls.

To determine the speed of both types of domain walls we perform another simulation.
We use a nanowire with 2048 lattice sites and create a domain wall at the 100th
lattice site. We ramp up the current in 5ns so the domain wall has full speed at
the 500th lattice site. We measured the time the domain wall needs to cover the
distance from the 500th to 1500th lattice site. By dividing the distance by the time
the domain wall needed for the distance we obtain the speed of the domain wall. We
perform this simulation for both domain wall types and different DMI strengths.

The results are shown in figure 4.5. As in the theory part described (equation 4.23)
the velocity of the domain wall depends linear on the DMI strength for small values of
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D. Especially, the DMI increases the velocity of one type of domain wall and decreases
the velocity of the other type. In the theory we have used a linear approximation
for small DMI strengths, which is a possible explanation for the slightly increasing
difference between theory and numerics for higher DMI strengths.

For the interaction we relax a state containing two domain walls separated by a di-
stance of 100 lattice sites (300nm). The domain wall width is ∆ = 36 nm so the
domain walls have a large separation. We drive the domain walls by applying a cur-
rent of 2.5 · 1011A/m2 current. The position of each domain wall is obtained by linear
interpolation of the x components of the magnetizations, where the sign of the x
components changes

X1,2 = − Mx[i]
Mx[i+ 1]−Mx[i] + x[i] (4.31)

where i is the number of the magnetization, x[i] the position of the magnetization,
Mx[i] the x component of the magnetization and the sign of Mx[i], and Mx[i + 1] is
different.

In figure 4.6 there are the simulation results for different DMI strength. The graphics
show the time dependence of the distance between the two domain walls and of
the relative angle between them. If the front domain wall is the faster one the
distance increases and by this the interaction decreases (figure 4.6 (a)). For a set-up
without DMI the domain wall velocity is equal for both types (b). There is only a
small interaction between them which effect an oscillation of the separation distance
between the domain walls. The mean separation distance is constant.

For a set-up where the front domain wall is the slower one the distance between the
domain walls decreases in time. By this the interaction becomes stronger which can
be observed by the increasing amplitude of the oscillation. In contrast to the system
without DMI the mean separation distance decreases in time. At some point the at-
tractive interaction is too strong and the domain walls annihilate. For increasing DMI
strengths the annihilation process takes place earlier. For very week DMI strength,
the interaction of the domain walls is for a longer time observably. Figure 4.7 shows
the interaction in a wire with a weak DMI strength of 1 · 10−5J/m2.
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figure 4.6.: The figures show the distance and the relative angle between two domain
walls during their movement in a wire. a) shows a set-up with a DMI
strength of 5 · 10−5J/m2 where the previous domain wall is the faster one
so the distance increase in time. b) shows a set-up without DMI so both
domain walls move with the same velocity. c) shows the results from a
set-up with a DMI strength of 5 · 10−5J/m2 but the previous domain wall
is the slower one. The distance decreases, the interaction becomes stronger
and at some point the domain walls annihilate. d) shows the results of
the same set-up like c) but with a DMI strength of 10 · 10−5J/m2. The
difference of the velocities is bigger and the annihilation happens earlier.
c) and d) show both that whether the interaction is attractive or repulsive
depends on relative angle.
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4. Domain wall creation with DMI by STT

figure 4.7.: The interaction between two domain walls in a wire with a DMI strength of
1 · 10−5J/m2. The front domain wall is slower so the distance between the
domain wall decreases. Due to the small DMI strength the interaction is
observable for a long time. The interaction becomes stronger if the distance
shrinks. Whether the interaction is attractive or repulsive strongly depends
on the relative angle between the domain walls.
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5. Domain wall creation without
Dzyaloshinskii-Moriya interaction by
spin orbit torques

In this chapter we investigate the creation of domain walls by spin orbit torques (SOT).
This chapter is divided into a theory part and a simulation part. In the first part we
present our analytic calculations. The calculations are very similar to the calculations
of the critical current in chapter 4 so we present now only the main steps. In the
second part we compare our analytic results to micromagnetic simulations.

5.1. Critical current without DMI
In this section we analyze the domain wall creation by spin orbit torques in a system
without DMI (only exchange and anisotropy). The spin orbit torque effects a change
of the magnetization perpendicular to the magnetization direction and the spin pola-
rization σ. If the spin polarization σ is not parallel to the x̂ direction the SOT acts a
torque on the ground state of the system so the ground state is not independent from
the current. Due to this reason we choose σ ‖ x̂. More precisely,

σ = ẑ × j (5.1)

with j = −jŷ.

To calculate the critical current value for domain wall creation with SOT we use the
same method as in section 4. To find the first conserved quantity we use the LLG
without damping terms

ṁ = −γm×Heff − τFL (m× σ) . (5.2)

With
Heff = 1

Ms

(
J∂2

xm+ 2λMxx̂
)

(5.3)

and equation 5.1 we can rewrite the LLG for a one dimensional wire

ṁx = − γ

Ms
Jx̂

(
m× ∂2

xm
)
− τFL j x̂ · (m× x̂)

= −∂x
(
γ

Ms
Jx̂ (m× ∂xm)

)
= 0 .
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5. Domain wall creation without DMI by SOT

At the critical point the system changes from the stable to the unstable state so we
calculate for what values of τFL the system is still stable. For ṁx = 0 the derivative
in the above equation is equal to zero so the argument in the brackets is a constant.
We can calculate this constant at x→∞ where ∂xm = 0 and mx = 1 and we obtain

∂xmy = 0 . (5.4)

We can rewrite the LLG (equation (5.2)) to a more general form

ṁ = γ

Ms
m× δFeff [m, τFL]

δm
(5.5)

with
Feff [m, τFL] =

∫ ∞
0

dx

[
J

2 (∂xm)2 + λ
(
1−m2

x

)
− τFLMs

γ
m · σ

]
. (5.6)

The physical solution will minimize Feff [m, τFL] so we interpret Feff [m, τFL] again as
action with x as time and we obtain as Lagrangian and corresponding Hamiltonian

L = J

2 (∂xm)2 + λ
(
1−m2

x

)
− τFLMs

γ
m · σ (5.7)

H = J

2 (∂xm)2 − λ
(
1−m2

x

)
− τFLMs

γ
m · σ . (5.8)

The Hamiltonian is conserved because it does not depend explicitly on the "time"x.
We can calculate the value of the Hamiltonian at x→∞ and with σ = jx̂

J

2 (∂xm)2 − λ
(
1−m2

x

)
− τFLMs

γ
m · σ = −τFLMs

γ
j . (5.9)

At the beginning of the wire where m = ẑ equation (5.9) gives

(∂xm)2 = 2
J

(
λ− τFLMsj

γ

)
(5.10)

Using that at the fixed magnetization (∂xm)2 = (∂xmx)2 +(∂xmy)2 and the equations
(5.4) and (5.10) we get

(∂xmx)2 = (∂xm)2 − (∂xmy)2 = 2
J

(
λ− τFL Ms j

γ

)
≥ 0 . (5.11)

If the current density is equal to the critical value j = jc the above expression has to
be equal to zero. From this follows

τFL = γλ

Msjc
. (5.12)
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5. Domain wall creation without DMI by SOT

We can also calculate τFL from material parameters [35, 46]

τFL = γξ~θHall
2Mset

(5.13)

where t is the thickness of the ferromagnetic layer, θHall the constant of the spin Hall
effect and ξ = τFL

τDL
the ratio of the constants from the field like term and the damping

like term. ξ and θHall are material dependent parameters. For the other ground state
m = −x̂ the result for τFL has the opposite sign.

With the both expressions for τFL 5.12 and 5.13 we calculate our critical current
density

jc = 2λet
ξ~θHall

. (5.14)

In our calculations we assume τDL = 0. For τDL → 0 the ratio ξ → ∞ and by this
the critical current vanishes jc → 0. Especially, for ξ → 0 where the field like term
vanishes our theoretical result for jc diverges jc → ∞. So our result should be only
valid for a dominant field like term ξ � 1.

5.2. Simulation
The spin orbit torque with spin polarization σ in x̂ direction effects a rotation of
the domain wall around the wire but no movement of the wall. The direction of the
rotation is defined by the sign of τFL and by the type of domain wall. So one domain
wall type rotates clock wise the other one counter clock wise. However, the torque
does not move the domain wall. In this case the Gilbert damping αm× ṁ term can
move the domain wall. The movement is perpendicular to the magnetization and the
change of the magnetization direction ṁmov ‖m× ṁ. Hence, for a rotating domain
wall the movement is along the x̂ axis. The direction of the movement depends on
the direction of the rotation. Thus, the spin orbit torque moves domain walls in the
opposite direction depending on their type.

Due to that reason there is no periodic domain wall creation possible, especially the
domain wall creation stops after one domain wall was created. Therefore we use the
method of nested intervals (like it was described in the previous chapter) to analyze
for what current densities there is domain wall creation. We perform the simulation
for several values of ξ and without DMI. For all the other constants we use the same
values given in the table in section 4.5.

Our results are shown in figure 5.1. Our theory diverges if ξ → 0 but the simulation
results goes to 2.23 · 1010A/m2 for ξ = 0. For ξ � 1 the simulation results and our
theory approaches.
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5. Domain wall creation without DMI by SOT

figure 5.1.: Simulation results and theory of the critical current density for domain
wall creation by spin orbit torques for different values of ξ. For a dominant
field like term ξ � 1 the simulation results fit well with the theoretical
prediction. For small values of ξ the theory diverges but the simulation
results remain in the same order of magnitude.

Our theory predicted that the critical current depends linear on the anisotropy
strength λ but is independent of the exchange constant J . We simulate the system for
different values of λ and J once for a high value of ξ = 15 and once for ξ = 0. For ξ = 0
we do not have any theoretical predictions. The results are shown in figure 5.2. The
simulations show that the critical current is independent of the exchange constant. For
the set-up with a large ξ the result fit with the theory. For ξ = 0 the critical current
is also constant except some fluctuations. The simulation for the different anisotropy
values shows a linear dependence for both simulation ξ = 15 and ξ = 0. For the large
ξ the results goes with our theory.
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5. Domain wall creation without DMI by SOT

figure 5.2.: a) and b) shows the critical current density for different values of the
anisotropy constant λ. In a) the ratio ξ = 15 and the simulations fits
with the theoretical predictions. For ξ = 0 b) our theory diverges so there
are only results from the simulation. The simulation shows also a linear
dependence. In c) and d) is the critical current for different values of the
exchange constant J . c) is a simulation with a large ratio of ξ = 15 and
d) is simulated with ξ = 0. In both cases the critical current density is
independent of J and for the large ξ it fits with our theory.
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6. Domain wall creation with
Dzyaloshinskii-Moriya interaction by
spin orbit torques

In this chapter we analyze the effect of additional Dzyaloshinskii-Moriya interaction
to the domain wall creation by SOT.

6.1. Critical current with DMI
We consider the same set-up like in chapter 4, a nanowire with exchange interaction,
anisotropy and DMI but the domain wall creation works by SOT. The energy is given
by (2.13) and the effective magnetic field is given by (4.8). The LLG reads

ṁx = − γ

Ms

(
Jx̂ ·

(
m× ∂2

xm
)
− 2D (mz∂xmz −my∂xmy)

)
− τFL j x̂ · (m× x̂)

= ∂x

(
− γ

Ms

(
Jx̂ · (m× ∂xm)−Dm2

x

))
= 0 .

The argument in the brackets is a constant which we can calculate again for x→∞.
We obtain

∂xmy = D

J
. (6.1)

We use the general form of the LLG without Damping terms

ṁ = γm× δFeff [m, τFL]
δm

(6.2)

and get the same conserved Hamiltonian as in the previous chapter

H = J

2 (∂xm)2 − λ
(
1−m2

x

)
− τFLMs

γ
m · σ = −τFLMs

γ
j . (6.3)

From the Hamiltonian we get

(∂xm)2 = 2
J

(
λ− τFLMsj

γ

)
. (6.4)

With (∂xm)2 = (∂xmx)2+(∂xmy)2 we can calculate τFL for the critical current density

35



6. Domain wall creation with DMI by SOT

figure 6.1.: Simulation results for the critical current density for domain wall creation
by spin orbit torques in a wire with DMI. The blue dots are the critical
current density determined by the method of nested intervals. The diffe-
rence between theory simulation and theoretical predictions is in the same
order like previous simulation results. They are viable due to the different
zoom factor (y axis). The red line is the shifted theory. It is shifted to
the simulation result without DMI. The slope of theory and simulation is
similar.

jc

τFL = γ

jc

(
λ− D2

2J

)
. (6.5)

With equation 5.13 we get a value for the critical current density

jc = 2et
ξ~θHall

(
λ− D2

2J

)
. (6.6)

For D = 0 we obtain the result for the critical current density we calculated in
the previous chapter (equation (5.14)). Our results show a quadratic decreasing of
the critical current density with increasing DMI strength. Hence, the critical current
density does not depend on the sign of the DMI and in comparison to the chapter
of domain wall creation by spin transfer torques (chapter 4) there is no symmetry
breaking due to DMI.
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6. Domain wall creation with DMI by SOT

6.2. Simulation
For the simulation of the domain wall creation by spin orbit torques in a wire with
DMI we use the parameters from section 4.5. To determine the critical current we
use the method of nested intervals.

The results are shown in figure 6.1. The critical current has a parabolic shape. DMI
decreases the critical current density quadratic so it is symmetric around its maximum
at D = 0.
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7. Conclusion and outlook

In this thesis we investigated the domain wall creation at a pined 90 degree domain
wall by spin transfer torques and spin orbit torques. We had a special interest on the
critical current density which is needed to create domain walls. We expanded the
theoretical predictions of reference [11] by adding Dzyaloshinskii-Moriya interaction
and spin orbit torques to the system. We showed that DMI can decrease the critical
current density and it depends linear on the DMI strength. Furthermore, DMI breaks
the symmetry of both possible types of domain walls (head to head and tail to tail). By
decreasing the critical current density for the creation of the one type of domain wall,
it increases the critical current density for the other type. This causes additionally
a different creation time of both types, so one type is created faster than the other one.

Further, we showed that DMI has an effect on the behavior of the domain walls
after their creation. Due to their different creation time, their different velocities
and the interaction between each other the domain walls annihilate. We showed
that with increasing DMI strength the annihilation process happens earlier in the wire.

In the second part of the thesis we analyzed the creation of domain walls by spin orbit
torques. We found that the critical current density is independent of the strength of
exchange interaction and depends linear on the anisotropy constant. DMI decreases
the critical current density quadratically and especially there is no symmetry breaking
due to DMI for the creation via spin orbit torques.

We performed micro magnetic simulation and compare the results to our analytic
calculation. For the determination of the critical current density we used two methods
(frequency method and nested intervals). Additionally we determined the speed of
both types of domain walls by the simulation and showed that they depend linear on
the DMI strength. We observed the interaction and annihilation of two domain walls
in the wire and showed that they depend mainly on the relative angle between them.

While we neglected the damping like terms in our calculations we had to add them
to our simulation. In particular, the simulation results for the domain wall creation
via spin orbit torques showed a significant influence of the damping like terms on the
critical current density. Furthermore, we assumed for the spin orbit torques a spin
current polarization along the wire what corresponds to an electric current flowing
perpendicular to it. The investigation of the influence of the damping like terms and
the possibility of domain wall creation by spin orbit torques with a spin polarization
perpendicular to the wire may be of interest for further research.
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A. Appendix

A.1. Nomenclature
DMI Dzyaloshinskii-Moriya interaction

LLG Landau-Lifshitz-Gilbert equation

STT Spin transfer torque

SOT Spin orbit torque

A.2. Additional figures
The following figures show the determination process for the critical current with
the frequency method. The first figure A.1 is chart which shows the expiration of the
process. The next two figures A.2, A.3 show the two different steps of the determination
process for the different DMI strengths. The last figure A.4 shows the result of the
determination at different lattice sites (50, 75, 100 and 100 lattice sites behind the
fixed magnetization).
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A. Appendix

figure A.1.: Determination process of the critical current by the frequency method.
First the two creation periods are determined by the dynamics of the ma-
gnetization 50 lattice sites after the last fixed magnetization. All periods
for one DMI strength and one domain wall are squared. The inverted squa-
red periods are plotted versus the current density and fitted by a line for
each value of alpha separately. The crossing point with the x axis repres-
ents the critical current density. The mean value of all four results is the
simulation result of the critical current density for this domain wall type
and DMI strength.
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A. Appendix

figure A.2.: Magnetization dynamic of the 50th site after the last fixed magnetization
for different DMI strengths and a current density of 5 · 1012A/m2. The
figure in the upper left shows the domain wall creation without DMI. The
creation frequency for both domain wall types is the same so the creation
is symmetric. Due to a small creation time the initial domain wall distance
is smaller than the domain wall width ∆, so the perpendicular component
of the magnetization do not has its minimum at 0. The following figures
show the domain wall creation in a system with DMI. The stronger the
DMI the bigger is the difference between the creation times.
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A. Appendix

figure A.3.: Determination of the critical current density for different DMI strength
for both domain wall types. On the left side there are the results for the
head to head domain wall on the right side the results for the tail to tail
domain wall. Without DMI (first row) the critical current densities are
the same for both types. For increasing DMI the critical current density
increases for the tail to tail domain wall while it decreases for the head to
head domain wall. Due to the higher creation frequency for, in this case,
the head to head domain wall the simulation becomes more inaccurate
what constitute the increasing difference between linear fit and simulation
results.
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A. Appendix

figure A.4.: Determination of the critical current by frequency method at different
lattice sites. The results of the simulation of the magnetizations 50, 75,
100 and 125 lattice sites behind the last fixed magnetization are shown.
The critical current value differs from the theoretical predictions due to
interaction between the domain walls during their movement to the ma-
gnetization where the dynamics are analyzed. The simulation results of
the several magnetization differs also due to this interaction.

Hallo Timo
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A. Appendix

A.3. Numeric Simulation Codes
The python code where we define our material for our numeric simulation. The code
was originally written by Matthias Sitte and Karin Everschor-Sitte for the numeric
simulations for the paper [11] and was edited by Nils Sommer for the simulation for
this thesis.

The following pages show the main parts of the simulation code.

1. Relaxation process

2. Simulation with current ramp up

3. Determination of the frequency for the frequency method

4. Main loop for the frequency method

5. Determination if a domain wall was created for the nested intervals method

6. Main loop for the nested intervals method
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def compute_relaxed_groundstate(alpha, dmi, force_relax=False):
    """Compute the relaxed groundstate of the nanowire with pinned impurity
    site without applied electric current.

    Args:
        alpha (float): The Gilbert damping parameter.
        force_relax (boolean): Flag whether to force the computation of the
            relaxed groundstate even if it has already been computed.

    Returns:
        The file name and path for the relaxed groundstate.
    """
    # Define the file name and path for the relaxed groundstate.
    outfile = "nanowire_relaxed_len={0}_BDMI={1}_M.ovf".format(XNODES, dmi)
    basename = os.path.splitext(os.path.abspath(outfile))[0]

    # Check if the relaxed magnetization has been computed in an earlier run.
    # If the output file exists, the calculation is not redone *unless* the
    # user uses the "--force-relax" flag.
    if os.path.exists(outfile) and not force_relax:
        print('(II) Relaxed state already computed.  Nothing to do here ...')
        return outfile

    # Create the mesh with open boundary conditions.
    mesh = RectangularMesh((XNODES, YNODES, ZNODES),
                           (XSTEPSIZE, YSTEPSIZE, ZSTEPSIZE),
                           periodic_bc=' ')

    # Create the material for the nanowire.
    material_nanowire = Material({
        'id': 'nanowire',
        'Ms': SATURATION_MAGNETIZATION,
        'A': EXCHANGE_COUPLING,
        'alpha': alpha,
        'axis1': UNIAXIAL_ANISOTROPY_DIRECTION,
        'k_uniaxial': UNIAXIAL_ANISOTROPY_STRENGTH
    })

    # Create simulation 'world'.
    body_nanowire = Cuboid((0, 0, 0), (XNODES, YNODES, ZNODES))
    nanowire = Body('nanowire', material_nanowire, body_nanowire)
    world = World(mesh, nanowire)

    # Create a solver to relax the magnetization taking into account exchange
    # interaction, anisotropy, and local pinning field.
    solver = create_solver(
        world, [ExchangeField, AnisotropyField, DMIField, ExternalField], log=True)

    #add DMI
    dx_dmi = (-dmi,0,0)
    dy_dmi = (-dmi,0,0)
    solver.state.Dx.fill(dx_dmi)
    solver.state.Dy.fill(dy_dmi)

    # Apply local magnetic field to impurity site.
    solver.state.H_ext_fn = lambda time: pinning_field(mesh, time)

    # Initialize the magnetic state.
    for i in range(0, LAST_FIXED_MAG):
        solver.state.M.set(i, 0, 0, INITIAL_STATE_IMPURITY)
    for i in range(LAST_FIXED_MAG, XNODES):
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        solver.state.M.set(i, 0, 0, INITIAL_STATE_NANOWIRE)

    # Create a step handler which stores the magnetization every 1/100th of a
    # nanosecond.
    # NB: The step handler automatically creates the directory `workdir` if it
    # does not exist.  Existing files in the directory will be overwritten
    # without notification.
    workdir = basename + '.run'
    solver.addStepHandler(
        OOMMFStorage(workdir, 'M', omf_format=OMF_FORMAT_BINARY_8),
        condition.EveryNthSecond(1.0e-11))
    #solver.addStepHandler(
    #    VTKStorage(workdir, 'M'),
    #    condition.EveryNthSecond(1.0e-10))
    

    # Set up the log file.
    # NB: `log` must be an open file object.
    logfile = basename + '.log'
    try:
        log = open(logfile, 'w')
    except:
        print('(EE) Failed to open log file!')
        raise  # throw again to let the caller know what happened

    solver.addStepHandler(FileLog(log), condition.EveryNthStep(100))

    # Relax state -- this will find the nearest (metastable) state with lowest
    # energy (which is not necessarily the true ground state of the system).
    solver.solve(condition.Relaxed(1))

    # Finally write the relaxed magnetization profile to the OVF output file.
    writeOMF(outfile, solver.state.M, format=OMF_FORMAT_BINARY_8)

    # Close the log file.
    log.close()

    return outfile
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def run_simulation(alpha, j0, j1, tau, time, infile, dmi,  force_sim=False):
    """Apply a current ramp from `j0` to `j1` with a sinusodial function in
    ramp time `tau`.

    Args:
        alpha (float): The Gilbert damping parameter.
        j0 (float): The initial current strength.
        j1 (float): The target current strength.
        tau (float): The current ramp time.
        infile (str): File name and path containing the initial state.
        force_rsim (boolean): Flag whether to force the run of the simulation
            even if it already ran before.

    Returns:
        The file name and path for the magnetization at the end of the
        simulation.
    """
    # Define the file name and path for the magnetization at the end of the
    # simulation.
    outfile = "nanowire_shedding_len={0}_j0={1}_j1={2}_tau={3}_alpha={4}_BDMI={5}"\
                "_M.ovf".format(XNODES, j0, j1, tau, alpha, dmi)
    basename = os.path.splitext(os.path.abspath(outfile))[0]

    # Check if the simulation has been run before.  If the output file exists,
    # the calculation is not redone *unless* the user uses the "--force-sim"
    # flag.
    if os.path.exists(outfile) and not force_sim:
        print('(II) Simulation already run.  Nothing to do here ...')
        return outfile

    # Create the mesh with open boundary conditions.
    mesh = RectangularMesh((XNODES, YNODES, ZNODES),
                           (XSTEPSIZE, YSTEPSIZE, ZSTEPSIZE),
                           periodic_bc=' ')

    # Create the material for the nanowire.
    material_nanowire = Material({
        'id': 'nanowire',
        'Ms': SATURATION_MAGNETIZATION,
        'A': EXCHANGE_COUPLING,
        'alpha': alpha,
        'axis1': UNIAXIAL_ANISOTROPY_DIRECTION,
        'k_uniaxial': UNIAXIAL_ANISOTROPY_STRENGTH,
        'ST_p': CURRENT_SPIN_POLARIZATION
    })

    # Create simulation 'world'.
    body_nanowire = Cuboid((0, 0, 0), (XNODES, YNODES, ZNODES))
    nanowire = Body('nanowire', material_nanowire, body_nanowire)
    world = World(mesh, nanowire)

    # Create a solver to relax the magnetization taking into account exchange
    # interaction, anisotropy, and local pinning field.
    solver = create_solver(
        world, [ExchangeField, AnisotropyField, DMIField, ExternalField, 
                SpinTorque, AlternatingCurrent],
        log=True)

    #add DMI
    dx_dmi = (-dmi,0,0)
    dy_dmi = (-dmi,0,0)
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    solver.state.Dx.fill(dx_dmi)
    solver.state.Dy.fill(dy_dmi)

    # Apply local magnetic field to impurity site.
    solver.state.H_ext_fn = lambda time: pinning_field(mesh, time)

    # Apply a time-dependent current.
    solver.state.j_fn = lambda time: current_ramp_function(time, j0, j1, tau)

    # Load the pre-computed magnetic state.
    if not os.path.exists(infile):
        print("(EE) Can't find initial state: `{0}`".format(infile))
        sys.exit(1)
    solver.state.M = readOMF(infile)
    
    # Create a step handler which stores the magnetization every 1/10th of a
    # nanosecond.
    # NB: The step handler automatically creates the directory `workdir` if it
    # does not exist.  Existing files in the directory will be overwritten
    # without notification.
    workdir = basename + '.run'
    solver.addStepHandler(
        OOMMFStorage(workdir, 'M', omf_format=OMF_FORMAT_BINARY_8),
        condition.EveryNthSecond(1.0e-10))
    #solver.addStepHandler(
    #    VTKStorage(workdir, 'M'),
    #    condition.EveryNthSecond(1.0e-10))

    # Set up the log file.
    # NB: `log` must be an open file object.
    logfile = basename + '.log'
    try:
        log = open(logfile, 'w')
    except:
        print('(EE) Failed to open log file!')
        raise  # throw again to let the caller know what happened

    solver.addStepHandler(FileLog(log), condition.EveryNthStep(100))

    # Run the actual simulation.
    runtime = tau + time
    solver.solve(condition.Time(runtime))

    # Finally write the relaxed magnetization profile to the OVF output file.
    writeOMF(outfile, solver.state.M, format=OMF_FORMAT_BINARY_8)
    

    # Close the log file.
    log.close()

    return outfile
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#method to determine the two creation times
def dft_analysis(alpha, j0, j1, tau, dmi):

    # Define the file name and path for the magnetization which should have
    # been created at the end of the simulation.
    outfile = "nanowire_shedding_len={0}_j0={1}_j1={2}_tau={3}_alpha={4}_BDMI={5}"\
                "_M.ovf".format(XNODES, j0, j1, tau, alpha, dmi)
    basename = os.path.splitext(os.path.abspath(outfile))[0]
    workdir = basename + '.run'

    # Check if the simulation has been run before.
    if not os.path.exists(outfile):
        print("(EE) Can't find previous simulation!")
        sys.exit(1)

    # Load data files.
    tmp = []
    for ovf_file in sorted(glob.glob(os.path.join(workdir, '*.omf'))):
        tmp.append(read_ovf(ovf_file))

    if len(tmp) == 0:
        print('Could not find any data sets for Fourier analysis!')
        sys.exit(1)
    # Convert into Numpy array, removing first 20 nanoseconds due to current
    # ramp.
    data = np.array(tmp[200:])

    # determine the perpendicular magnetization component of the 150th lattice site.
    data = (data.T)[150]
    t = np.linspace(0,1e-10*len(data),len(data))
    Mperp = 1-data**2

    #find maxima
    maxima = []
    b = False
    minimum_found = False
    
    #find first a minimum to avoid maxima at the boundary
    for i in range(len(Mperp)-1):
        if Mperp[i] < Mperp [i+1] and minimum_found == False:
            minimum_found = True
        if Mperp[i] > Mperp[i+1] and b == False and minimum_found == True:
            maxima.append(t[i])
            b = True
        if Mperp[i] < Mperp[i+1] and minimum_found == True :
            b = False
    
    T1 = []
    T2 = []
    i = 0
    #determine the two creation times as differences between the maxima and
    #order them T1 < T2
    while i < len(maxima)-2:
        T1.append(maxima[i+1]-maxima[i])
        T2.append(maxima[i+2]-maxima[i+1])
        i = i+2
    T1 = np.mean(T1)
    T2 = np.mean(T2)
    if T1 > T2:
        tmp = T1
        T1 = T2

1



        T2 = tmp
    
    with open(basename + '_maxmode.txt', 'w') as outfile:
        outfile.write("{0:.8g}\t{1:.8g}\t{2:.8g}\t{3:.8g}\t{4:.8g}".format(
                        alpha, dmi, j1, T1, T2))
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#main loop for the simulation for the frequency method

for dmi in[-15e-05,-10e-05,-5e-05,0,5e-05,10e-05,15e-05]:
    # Compute initial groundstate without current.  The precise value of
    # `alpha` is not relevant (choosing small values will only result in
    # longer simulation times).
    relaxed_state = compute_relaxed_groundstate(
        alpha=0.25, dmi=dmi, force_relax=args.force_relax)
    
    
    for alpha in[0.5,0.3,0.4,0.2]:
        infile = relaxed_state
        j0 = 0
        j1start = -5.1e12
        for j1 in np.arange(j1start, j1start-0.4e12, -0.05e12):
            # Run the simulation
            print("(II) Running simulation for alpha={0} ramping from " \
                  "j0={1} to j1={2} ...".format(alpha, j0, j1))
            current_state = run_simulation(
                alpha=alpha, j0=j0, j1=j1, tau=CURRENT_RAMPTIME,
                time=SIMULATION_TIME, infile=infile, dmi=dmi,
                force_sim=args.force_sim)
    
            # Perform the Fourier analysis.
            print('(II) Performing Fourier analysis of simulation data to ' \
                  'find the frequency for domain wall shedding ...')
            dft_analysis(alpha=alpha, j0=j0, j1=j1, tau=CURRENT_RAMPTIME, dmi=dmi)
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#method to determine if there was domain wall creation
def analysis(alpha, j0, j1, tau, dmi):

    # Define the file name and path for the magnetization which should have
    # been created at the end of the simulation.
    outfile = "nanowire_shedding_len={0}_j0={1}_j1={2}_tau={3}_alpha={4}_BDMI={5}"\
                "_M.ovf".format(XNODES, j0, j1, tau, alpha, dmi)
    basename = os.path.splitext(os.path.abspath(outfile))[0]
    workdir = basename + '.run'

    # Check if the simulation has been run before.
    if not os.path.exists(outfile):
        print("(EE) Can't find previous simulation!")
        sys.exit(1)

    # Load data files.
    tmp = []
    for ovf_file in sorted(glob.glob(os.path.join(workdir, '*.omf'))):
        tmp.append(read_ovf(ovf_file))

    if len(tmp) == 0:
        print('Could not find any data sets for analysis!')
        sys.exit(1)
    # Convert into Numpy array
    data = np.array(tmp[:])

    # check if the x component changes it sign in time
    #if yes a domain wall passed the 120th lattice site
    #note to change the sign >,< for the other ground state
    data = (data.T)[120]
    for i in data:
        if i<0:
            return True
    return False
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#loop to find critical current densities for different DMI strength via
#method of nested intervals
for dmi in [-15e-05,-10e-05,-5e-05,0.0,5e-05,10e-05,15e-05]:
    
    #compute relaxed ground state
    relaxed_state = compute_relaxed_groundstate(
        alpha=0.25, dmi=dmi, force_relax=args.force_relax)

    #define values for simulation
    jc = jc_theory(dmi)
    delta = 1e12
    
    alpha = 0.1
    infile = relaxed_state
    j0 = 0
    j1higher = jc+delta
    j1lower = jc-delta
    j1mid = (j1higher+j1lower)/2

    # check if DW creation is in the choosen interval
    
    #run simulation for the higher border of the electrical current interval
    print("(II) Running simulation for alpha={0} ramping from " \
          "j0={1} to j1={2} ...".format(alpha, j0, j1higher))
    current_state = run_simulation(
        alpha=alpha, j0=j0, j1=j1higher, tau=CURRENT_RAMPTIME,
        time=SIMULATION_TIME, dmi = dmi, infile=infile, 
        force_sim=args.force_sim)

    print('(II) Performing analysis of simulation data to ')
    
    #check if a domain wall was created
    #if not the higher border is to low 
    #stop simulation
    if analysis(alpha=alpha, j0=j0, j1=j1higher, tau=CURRENT_RAMPTIME, dmi=dmi) == False:
        print('No DW Creation in the choosen interval')
        return

    #run simulation for the lower border of the electrical current interval
    print("(II) Running simulation for alpha={0} ramping from " \
          "j0={1} to j1={2} ...".format(alpha, j0, j1lower))
    current_state = run_simulation(
        alpha=alpha, j0=j0, j1=j1lower, tau=CURRENT_RAMPTIME,
        time=SIMULATION_TIME, dmi = dmi, infile=infile,
        force_sim=args.force_sim)

    #check if no domain wall was created
    #if a domain wascreated the lower border is to high
    #stop simulation
    print('(II) Performing analysis of simulation data')
    if analysis(alpha=alpha, j0=j0, j1=j1lower, dmi=dmi, tau=CURRENT_RAMPTIME) == True:
        print('No DW Creation in the choosen interval')
        return

    #main loop for nested interval method
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    #choose NUMBER_OF_LOOPS for requierd the resultion
    for loop in range(NUMBER_OF_LOOPS):

        #simulation for the middle of the electric current interval
        print("(II) Running simulation for alpha={0} ramping from " \
              "j0={1} to j1={2} ...".format(alpha, j0, j1mid))
        current_state = run_simulation(
            alpha=alpha, j0=j0, j1=j1mid, tau=CURRENT_RAMPTIME,
            time=SIMULATION_TIME, dmi = dmi, infile=infile,
            force_sim=args.force_sim)

        # Perform the analysis.
        print('(II) Performing analysis of simulation data to')
        
        #check if there was domain wall creation with j_mid
        #decide in which half of the interval the critical current value is located
        if analysis(alpha=alpha, j0=j0, j1=j1mid, tau=CURRENT_RAMPTIME, dmi=dmi) == True:
            tmp = j1mid 
            j1mid = (j1lower+j1mid)/2
            j1higher = tmp
        else:      
            tmp = j1mid
            j1mid = (j1higher+j1mid)/2
            j1lower = tmp
    
    #save results in a file
    else:
        with open("nanowire_shedding_len={0}_tau={1}_alpha={2}_BDMI={3}".format(
        XNODES, CURRENT_RAMPTIME, alpha, BDMI) + '_interval.txt', 'w') as outfile:
            outfile.write("{0:.8g}\t{1:.8g}\t{2:.8g}\t{3:.8g}\t{4:.8g}".format(
                alpha, dmi, j1lower, j1mid, j1higher))
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