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Pattern recognition in the 2D-Ising model

Abstract

We studied the behavior of magnetization of a 2D Ising model around the critical
temperature where it changes its phase from disorder to ordered and vise versa.
Since this critical temperature is strongly depending on the coupling constant,
we simulated different coupling parameters for different regions of the lattice in
order to test recognition methods.

First we use calculated the critical temperature by identifying the ordered
and disordered phases with different temperatures. We studied the dependence
of the critical temperature with the coupling parameters. We wanted to study
systems where the lattice is divided in regions with different coupling constants.
Then we trained a neural network on the data to achieve a learning after which
the Deep Neural Network was able to recognize the different regions in the
data. The recognition was based on the magnetization profile after a certain
step interval in the Monte Carlo simulation of the 2D Ising model.

We were able to show that the neural networks used were able to identify the
different coupling constants in the data resulting in a clear distinction between
the regions.
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Pattern recognition in the 2D-Ising model

1 Introduction

Physicists need methods to find underlying structures in data obtained from
experiments and simulations.Neural networks are prominent tools for picture
recognition and analysis of large data sets.They provide new prospects for data
analysis in physics and other sciences. Neural networks have been used with
success to solve various problems in fields like Astrology [1], image recognition
[2], fluid dynamics [3]and for Ising spin systems [4]. It was shown [5] that it
is possible to train networks on recognizing phase transition curves from data.
In summary it is possible to train neural networks to find pattern representing
physical properties in data without lengthy calculations nevertheless the training
process of the neural network takes time. This Bachelor thesis is about pattern
recognition of data with thermal fluctuations from the 2D-Ising model for a
square lattice using deep neural networks. The 2D Ising model is a simplified
system that can approximate interactions in spin systems. The 2D Ising model
consists of spins on a square lattice which are either plus or minus one. The
system will start disordered and will order when introduced to a infinite heat
bath below the ordering temperature. The simulation used in this work was a
Monte Carlo simulation with replica exchange. The transition point of the 2D
Ising model was determined. The Deep Neural Network that was used in this
thesis was a feedforward neural network. The magnetization curve for high and
low temperatures was also simulated and displayed. It was possible to detect
square substructures, with a different coupling constant J, in the square lattice
after training the neural network.

The thesis is structured as follows. In Sec.II we will discuss the theory behind
the 2D Ising model including exact solutions for the square lattice. We will
also introduce the Monte Carlo algorithm with replica exchange and the basic
principles behind neural networks. In Sec.III.1 we will discuss the simulation
results using the Monte Carlo algorithm with replica exchange for the 2D Ising
model and the obtained magnetization curve. In Sec.III.2 we will discuss the
training and the results of the trained Deep Neural Network.
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2 Theory

2.1 2D-Ising model

In this thesis we consider the Ising model in two dimensions. The Ising model
was introduced in 1920 by Wilhelm Lenz to describe ferromagnets in a simplified
model. It was first solved for the one dimensional case by E.Ising [6]. The Ising
system consists of a square lattice with a specific size N = LxL. On each lattice
point lies a point particle with a single integer value which is either +1 or -1
representing the spin at that site. σ is the representation of the spin value at
each lattice point.

Integer values are a good representation of spins in some physical materials
like spin glasses. Spin glasses have a disordered and a ordered phase for different
temperatures1. When the system is at a high temperatures the system is not
ordered. When such a system is introduced to a infinite heat reservoir with
T < Tc, the system will reach the thermal equilibrium after a certain amount of
time. When the system reaches the equilibrium all of its spins will be aligned
in the same direction. This is due to the coupling between the spins and the
reduction of the thermal noise. The interactions between the spins can be
described in first order as interactions between the nearest neighbors on the
lattice. The Hamiltonian for the Ising model is:

Figure 1: Spin glasses for different temperatures. Image changed from Ref.[7]

The electrons in spin glasses behave for low temperatures like point particles
with a spin-half pointing orthogonal out of the lattice plane.

H = −J
∑
i,j

σiσj − µ
∑
j

hjσj (1)

In our case we can neglect the second term because we set the magnetic field
h = 0 which results in a simplified Hamiltonian. µ is the magnetic moment of
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the particles, J the coupling constant between the spins and σi the value for the
spin at the position i and σj the value for the spin sitting on site j.

H = −J
∑
i,j

σiσj (2)

The Hamiltonian for the Ising model is given by the sum over all pairs of adjacent
spins. The energy of the model follows subsequently as:

E =
1

2

∑
i,j

Hi,j = −1

2
J

N∑
i

∑
j,nn

σiσj (3)

J is the coupling constant that represents the strength of the coupling between
the spins on the lattice. The second sum sums over the four nearest neighbors of
the spin at the site i. A interaction with a positive coupling constant J is called
ferromagnetic. Interactions with a coupling constant smaller zero are called
antiferromagnetic and coupling constants of zero lead to no interaction. The
energy in the system will tend towards equilibration for low disturbances. For no
disturbing factors the systems will reach the ferromagnetic or antiferromagnetic
state.

Figure 2: Ferromagnetic ordering for J > 0. Image reproduced from Ref.[8]

Figure 3: Antiferromagnetic ordering for J < 0. Image reproduced from Ref.[9]

In this thesis we will only consider ferromagnetic systems which means we only
allow positive values for the coupling constant J. The total magnetization of
the system can be determined by calculating the sum over all the spins in the
system and dividing by the total number of spins. The formula for the energy
of the system is :

M =
1

N
(

N∑
i=1

σi) (4)
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M is the magnetization of the system and N the total number of spins in the
system. σi is the spin at the position i.

Figure 4: Theoretical curve for the modulus of the magnetization of the 2D
Ising model. Image reproduced from Ref. [10]

The model can be used to model physical spin systems because spin glass
systems can be reduced to first order interactions between nearest spins on
a square lattice with spins in positive or negative direction orthogonal to the
lattice plane.

Figure 5: Next neighbor spins in green which interact with the center spin in
orange. Interactions between the blue spin and the red spin are neglected in the
Ising model due to only considering nearest-neighbor interactions

By considering disturbing forces the system gets more complicated and the
problem has no longer a known solution. Local spins can flip when the system
sits in a heat bath at a finite temperature (real systems). Flips of a local spin
can be caused by thermal fluctuations. This is considered in the flip probability:

pflip = e
− ∆E

kBT (5)

pflip describes the probability of a spin to flip because of thermal fluctuations
in the system because we assumed the system to be canonical. ∆E describes
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the energy difference between the original state and the energy for the same
configuration but with a flipped spin in the position i. kB is the Boltzmann
constant and T the temperature in Kelvin. The exponential factor resembles
the Boltzmann distribution which describes the system when it reached thermal
equilibrium with the heat bath at the temperature T. Therefor the flipping
probability depicts the chance of random fluctuation of spin due to thermal
noise for temperature T > 0K.

For the 2D-Ising model we chose a square lattice with a total number of
N = L x L spins. When the lattice is finite there will be finite size effects in
the simulation. To reduce the finite size effect of smaller systems, one can use
periodic boundary conditions. A visual explanation for the periodic boundary
condition can be found in (6).

Figure 6: Shows the interaction for a lattice with periodic boundary condi-
tion(black box) with its periodic continuation. Image reproduced from Ref.[11]

Sloving the 2D Ising model lead to a single second order phase transition at
the critical temperature Tc which was shown by Onsager [12]. When we just look
at the two dimensional Ising model, we obtain a second order phase transition
at a critical Temperature Tc. This critical temperature depends on the strength
of the coupling constant J and on finite size effects when considering a finite
square lattice. For temperatures below the critical temperature Tc the system
is relaxed which means almost all of the spins point in +1 or -1 direction(15).
For temperatures much higher than Tc, the spins in the system fluctuate mostly
random without any alignment(17).

2.1.1 Exact Solution for the 2D-Ising model and Finite Size Effects

The 2D-Ising model was first solved by Onsager in 1944 for the infinite square
lattice which means we know the value for the critical temperature for the case
of the infinite lattice [12].

Since we have a canonical ensemble (N,V,T constant) one can start with the
free energy of the system.

F = −β ln(Z) (6)
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The partition function Z is the sum over all spin configurations.

Z =
∑

e−NβH (7)

With the Hamiltonian H = −J
∑
i,j σiσj . N is here the total number of spins in

the system and β the Boltzmann constant. The Onsager solution for a square
lattice Ising model with periodic boundary condition was calculated for the
limiting case of N →∞.

F (β) = − ln(2)

2
− ln (cosh(2βJ))− 1

2π

∫ π

0

ln
(

1 +
√

1−K2 cos2(θ)
)
dθ (8)

K =
2 sinh(2βJ

cosh2(2βJ)
(9)

K is a factor resulting from the derrivation of the free energy formula. With
K=1 (knowing that there is only one phase transition) the critical temperature
can be obtained by solving the equation for β.

βONS =
1

2J

(
ln(1 +

√
2)
)
≈ 0.4407

J
(10)

[12] N is here the total number of spins in the system. The results for the finite
size model were calculated by I.M. Karandashev [13]. He calculated the free
energy of the system with the Kasteleyn-Fisher algorithm. This algorithm is
based one the calculation of the determinant of the transition matrix represent-
ing the finite 2D square Ising model. Calculations in the paper[14] led to the
approximation for the free energy for large values of β(asymptotical behavior of
the free energy).

F ≈ −2βJ

(
1− 1√

N

)
(11)

The correct values were calculated only for lattices sizes of L=25, L=50 and
bigger square lattices. The approximation for β was derived by fitting the
calculated results for the different lattice sizes([13]page 3-5).

βc ≈
βONS

J

(
1 +

5

4
√
N

)
(12)

2.2 Simulation

2.2.1 Monte Carlo Simulation

A Monte Carlo Simulation is a simulation that relies on random picked num-
bers that are then checked for specified interaction criteria. With the random
behavior of the Monte Carlo method it is possible to approximate complicated
behavior of dynamical systems. At the beginning of the algorithm stands a
random input which can then be checked for certain behavior. This process is
repeated multiple times to ensure that every possible point that can be picked
was picked and checked multiple times by the algorithm criteria. This results in
a good representation of a time evolving system. It consists of a random number
generator and a threshold value n. At the beginning there is a random point
picked, which than can be fed into a following algorithm. After the following
algorithm is finished, the changes will be saved and the loop will start again
until it ran n times.
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2.2.2 Metropolis Algorithm

The advanced Monte Carlo algorithm that was used for the simulation was a
Metropolis Algorithm. The algorithm was inspired by the work from Jacques
Kotze ([15]).

Lattice Initialization

Choose random point

i=i+1

ΔE>0 ?
(# of different spins <2)

Yes

rand(0,1) < exp(-ΔE/𝑘𝐵T) ?

Save changes

No

n > i ?

No

Yes

Output

Yes

No

Flip spin

Flip spin

Figure 7: Flowchart of the Metropolis Algorithm

The Metropolis algorithm receives an input which is in our case a square
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lattice with random polarization directions orthogonal to the lattice planes re-
sembled by the values +1 and -1 and the temperature T for a infinite thermal
reservoir around the lattice. A point on the lattice will get randomly picked.
The energy difference between the spin at the site and the flipped spin at the
same site is calculated. When the energy difference ∆E is smaller or equal to
one, which means the flipped state results in a energetically more stable state,
the spin gets flipped. When the energy is positive then spin gets flipped when a
random number from 0 to 1 (random probability) is lower than the Boltzmann
distribution for the energy difference. This resembles the influence of thermal
noice caused by the heat bath. These changes are then saved and other ran-
dom lattice points are picked and checked until the total number of steps is
reached and the final lattice is printed out. A good random number genera-
tor and a large step number n are required to ensure that every lattice-point
was checked multiple times during the Metropolis algorithm. For systems that
rely purely on random variables, the Metropolis Algorithm is a good approxi-
mation if the number of Monte Carlo steps n converges towards infinity. This
argument is based on the central limit theory which states that a large number
of independent random variables n form a normal distribution when summed
and normalized even if the initial variables are not normally distributed. This
means that in limit of large numbers of variables the results will tend towards a
normal distribution of the correct result. The size of the lattice has to be high
enough to resemble a periodic lattice without border effects like clustering on
the borders or substructures. Nevertheless every point in the large lattice has to
be reached multiple times for the system to reach its equilibrium state(n needs
to be high enough). Under these circumstances the Metropolis Algorithm leads
to accurate results for systems like the 2D-Ising model (if the temperature is
under Tc) to a relaxed equilibrium state.

2.2.3 Replica exchange

Most systems take plenty computational time to reach the equilibrium state.
This is often caused by the existance of metastable states. Metastable states
can be described as a local minimum in the energy landscape of the system. If
this minimum is low enough the probability for the system to travel over the
metastable energy barrier will be very small thus leading to longer computation
times to reach the equilibrium state.
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Figure 8: Picture of a system with one metastable state. Image reproduced
from Ref. [16]

The key factor in the lifetime of metastable states is, in case of the Ising
Model, the temperature. Low temperatures will result in lower numbers of
thermally flipped spins so the system can reach metastable states more often.
With larger thermal fluctuations, the energy of the system will fluctuate more
frequently. The energy barriers are crossed at an increasing rate when the
temperature increases. Metastable states are caused by random areas with im-
balanced numbers of spins with the same polarization. This happens randomly
because of the initialization of the lattice or the random picks in the algorithm
steps.

Figure 9: Picture of simulation data in a metastable state at T = 0.2
kB

. The
temperature of the heat bath is so low that the disturbance by thermal noise
can be neglected thus the lifetime τ of such a state would be τ →∞

The focus of Replica Exchange is to calculate the transition probability of
Boltzmann distributed systems for neighboring temperatures. Meaning one cal-
culates the uncertainty for which the system can occur with the same energy
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but a heat bath at a different temperature. When the temperatures are close
enough to each other, the probability density functions meaning the Boltzmann
distributions of both neighboring systems overlap. The overlap can be seen as a
probability of the system to exist in a neighboring thermal bath with a different
temperature.

Figure 10: Overlap probability densities for two neighboring temperatures. Im-
age edited from Ref. [17]

The green line in the graphic shows the point of equal probability for a en-
ergy to happen in systems under temperatures T1 and T2. For a energy state
measured in system T1 that lies right of the green intersection line, the probabil-
ity of the energy state is more likely to happen with a heat bath at the different
temperature T2. When this case occurs in the simulation the neighboring sys-
tems heat baths are interchanged. This results in the system previously having
the temperature bath at T1 now having the temperature T2. So when replica
exchange is introduced, one needs a system with different temperatures running
simultaneously through the algorithm. After a certain number of steps in the
algorithm(can be seen as a time-step) the transition probability between neigh-
boring systems will be calculated and the interchange of temperatures accepted
or neglected. If the transition is accepted, the temperatures for both systems
will be interchanged. This is checked alternately for all odd and even replicas to
prevent systems from traveling over more than one temperature at once. The
criterion for a replica exchange in a system that depends only on the previous
state with no memory of its past(Markov Chain like) model can be calculated
with the Metropolis-Hastings criterion.

p(i→ j) = min

(
1, exp

(
Ei − Ej
1

kBTi
− 1

kBTj

))
(13)

The equation is taken from ([18]). Ei is the energy in the system i. Ej is
the energy in the neighboring system j. Ti and Tj are the temperatures of the
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systems i and j. The formula is derived from two Boltzmann factors.

e
−

Ej
kBTi

− Ei
kBTj

e
− Ei

kBTi
−

Ej
kBTj

= exp

(
Ei − Ej
1

kBTi
− 1

kBTj

)
(14)

This criterion ensures that the overlap between the probability density functions
is sufficiently high to ensure an equal or higher probability for the state to exist
in the neighboring temperature. To obtain good results for the whole energy
landscape, the overlap and the number of total replica exchange steps has to be
high enough to allow every replica multiple to reach every temperature multiple
times.

2.3 Neural networks

Neural networks like those used in this thesis are based on the neural connec-
tions in the human brain. The human brain consists of neurons and synapses.
Neurons have inputs and outputs, which are synapses(axons and dendrites) that
connect the neuron cells to one another and can propagate input signals over
multiple neurons.

Figure 11: Human neuron and axon connection in the human brain(upper pi-
icture) and simplified neural connections in the human brain(lower picture).
Image reproduced from Ref.[19]

In the human brain, the inputs(currents) get propagated with dendrites to
the cellular body. If the combined current from all the dendrites reaches a
specific threshold, the neuron cell will fire a current that is then sent through
the axon and reaches the connected neurons.

In a simplified picture we can reduce the cellular body to a single node now
called the neuron. This single node can be implemented on a computer with a
function that receives inputs and calculates an output. When implemented on
a computer the connection strength between the neurons can be described by a
single weighted input channel. The threshold at which the neuron fires a signal is
when implemented on a computer normally represented by a nonlinear function
with a large gradient. This function is an approximation of the influence of the
propagation of currents in the human brain. It describes the strength of the
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output current for the neuron. In nature, the activation function is normally a
step function which means either the neuron is firing or not.

Figure 12: A neural network with all steps. Image was taken from Ref.[20]

The picture shows a neural network with many inputs(blue) and the accom-
panying weights w that determine the contribution strength to the neuron. In
the next step the weighted inputs will be summed up and put into a activation
function f(x). The result of the activation function is the output y.

2.3.1 Deep Neural Networks

Deep Neural Networks are in principle similar to normal neural networks. The
difference between both lies in the size. Deep Neural Networks consist of one
input layer, one output layer and multiple hidden layers which all consist out
of multiple neurons. Hidden layers are layers without any output or direct data
input. This means they are acting like a black box because there is no direct
information on what their effect on the input data is. Another difference to
normal Neural networks is the number of neurons per layer. Simple neural
networks consist of a couple of neurons while large DNN consist of hundreds
or thousands of neurons per layer. For many years Deep Neural Networks were
not able to be trained because the training of the weights in the network took
too long. This only changed in recent times due to the progress in cheaper
and faster computational power from GPUs and rentable power from computer
clusters.
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Figure 13: Example of a Deep Neural Network(DNN) with 2 hidden layers.
Image reproduced from Ref.[21]

In a simple DNN every neuron in one layer is connected to every neuron in
the following layer. Each neuron has different weights between its connections.
When the neurons are only connected to a few surrounding neurons the layer
is called convolutional. Convolutional layers are used to reduce inputs to the
important parameters. A convolutional layer acts like a progressive filter that
can filter unnecessary information. This results in less training time for the
network but also to some data loss. When considering pattern recognition with
image reconstruction the input layer has normally the same amount of neurons
than the output layer. When the input got filtered the dimension of the input
layer can be higher than the dimension of the output layer. There are many
more types of Neural Networks at this time but these two are the only Networks
that will be discussed in this thesis.

2.3.2 Supervised and Unsupervised Learning

To train a neural network one needs feed data into the network to train the
weights in the network(the weights are randomly changed for each test). When
a changed weight results in a better recognition its value will be updated. If a
changed weight does not improve the recognition it will not be updated. Learn-
ing can be done in two different ways which all have advantages and disadvan-
tages. The first way is to feed input data and labels which represent the output
data into the system. The better the labels fit to the output of the network
the more the weights are changed towards this values. This training form with
labels is called supervised learning. For the unsupervised learning the network
is only given the input data without any labels. The network has to find sim-
ilarities in the given data and has to learn what the important pattern of the
system are.
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2.3.3 Training a neural network

Both techniques, the supervised and the unsupervised learning suffer from var-
ious flaws. In Supervised learning the output of data has to be initially known.
So there has to be a large amount of data with a known underlying structure
that represents the pattern one wants to find in data.

In Supervised learning one is able to train pattern for known structures in
materials very efficiently but the network fails when it is confronted with data
that differs from the known structure. For unsupervised learning the system
needs much more training data than networks which use supervised learning.
The reason for that is obvious because the unsupervised system has to find
underlying structures in the data without any previous information about them.
For just one known underlying structure the system will produce similar results
and will fail for new underlying structures. Unsupervised learning can also lead
to the recognition of unwanted pattern in the data. So Unsupervised Learning
also requires a large variety of different input data to possibly find a universal
underlying structure.

We can conclude that the Supervised Learning needs the information of the
underlying structure for all input data and has often trouble to recognize related
structures in the test data. The Unsupervised Learning needs much more input
data with different substructures but is able to recognize related structures often
better than supervised systems. This assumes that the pattern that was learned
by the network is universal to all of the data that the network will be tested
with afterwards. Training data also has to pass the unsupervised system much
more often(when the training data is limited) which can lead to results specific
to the training data.

2.3.4 Overfitting

Input data is normally split initially into a training and a testing set. This
is done, because when testing the training results of a network, it is useful to
check the results with a second data set. When the second data set was never
introduced to the network, the testing results will filter out any possible learning
of the training data itself. This can include the order of the data or pattern
that were unique to the first data set. The network can also train the data set
itself which means the network will gives the same results for multiple different
systems. This training of the data and not the pattern in the whole data is
called overfitting. Overfitting happens mostly in very large networks or when
very little data is used for multiple times for training the network.
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3 Results

Our results are structured in three parts. The first part includes the Monte Carlo
Simulation and the results for the critical temperature using the magnetization
curve. In the second part we trained a neural network to find a fixed squared
patch of a different coupling constant in the lattice. In the last part we allowed
the squared patch to exist everywhere in the lattice and trained the neural
network again.

3.1 Monte Carlo Simulation

3.1.1 Building the finite system

When using computers for simulations one needs to use finite systems to allow
calculating the simulation with Monte Carlo methods. In our case we chose
smaller systems to allow faster computation of the simulation. The Monte
Carlo simulation was programmed with python(31 and following pages). Replica
exchange was included for the sampling of magnetization data around the critical
temperature. The size of the square lattice, for which we simulated the 2D Ising
model, was for the observation of the magnetization curve a N=16x16 lattice
and for the training data for the neural network the size was N=32x32. This
allowed us to simulate enough data to sample the magnetization curve and to
train the neural networks in the limited time. The small system sizes were not
a big problem because we know the correction formula for finite sized systems.

3.1.2 Randomness of the Simulation

A pseudo random number generator was used to simulate the randomness in
the Monte Carlo simulation. The used number generator was, for the randomly
picked lattice site which produced integer values from 0 to L, random.randint(0,L)
and for the flipping probability it was the function random.random() (7). The
used number generators are only pseudorandom, which means they are created
by the computer with a function instead of a purely random number. We can
see in the following 2D histogram that the deviations to a true random number
generator are not visible in the data.
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Figure 14: 2D histogramm of the data from 2 random number genera-
tors(random.random() with 50x50 bins

We can see that there are no points that did not get picked during the testing
for every point and that all points got picked similarly often and we can not see
any pattern in the data by eye. We can assume a sufficient randomness for the
pseudo random number generator in our Monte Carlo simulation.

3.1.3 Results for different temperatures of the simulation

The 2D Ising model has a single second order phase transition. In order to
introduce pattern recognition with neural networks we need to find the different
pattern that can happen in the simulation. In the 2D Ising model there are
three different cases that are useful to consider. The temperature can be much
lower than the critical temperature, around the critical temperature and above
the critical temperature. The following pictures show the three cases for a
32x32 lattice with picutres after 10000,50000 and 500000 Monte Carlo steps for
a coupling constant of J = 1. The simulation was run without replica exchange.
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The critical temperature for the system is Tc,L=32 ≈ 2.18
kB

(18).

Figure 15: Result for low temperaturesT = 1.1
kB

< 2.18
kB

= Tc,L=32

Temperatures under the critical temperature lead to an ordered state and
clear clustering. The system is dominated by the next neighbor interactions.
The total magnetization is close to one because the spins are almost uniform.

Figure 16: Result for temperatures at Tc. T = 2.18
kB
≈ 2.184

kB
= Tc,L=32

A Temperature around the critical temperature leads to a semi clustered
case. Which means it shows the transition case between the ordered and un-
ordered case. The total magnetization is close to one half.

Figure 17: Result for low temperaturesT = 4.0
kB

> 2.18
kB

= Tc,L=32

Higher temperatures than Tc cause thermal fluctuations to dominate the
fluctuations in the system.There might still be some areas with local polarization
but they are mostly a cause of the random fluctuations. Finite size effects also
cause in a magnetization different to the theoretical prediction of zero for the
infinite square lattice. This is caused by the periodic boundary conditions.
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3.1.4 Phase transition with parallel tempering

To analyze the behavior around the phase transition, one can calculate the
magnetization of the relaxed systems at different temperatures. To obtain the
results for our case (32x32 lattice), the approximated formula(12) for the critical
temperature was used. This leads to the approximated results for both used
lattice sizes.

βc,L=16 ≈
0.4751

J
(15)

βc,L=32 ≈
0.4579

J
(16)

This can be easily converted into temperatures since β = 1
kBT

.

Tc,L=16 ≈
2.105J

kB
(17)

and

Tc,L=32 ≈
2.183J

kB
(18)

For the limiting case the temperature converges towards Tc,N→∞ ≈ 2.268kBJ .

M =
1

4nm

∑
n,m

(
∑
nn

σn,mσnn) (19)

The formula for the magnetization curve was modified by taking the close pat-
tern in the data into consideration. This allows better sampling around the
critical temperature because large pattern of different polarization do not dis-
turb the value of the magnetization as much as in the normal magnetization
formula(4). This modified formula for the magnetization does not only take
single spins into consideration, but also the local magnetization of the system,
which depends on the next neighbors. The result is then normalized to ob-
tain magnetization values from zero to one. This magnetization draws a better
picture for semi clustered cases that happen around the critical point.
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Figure 18: Obtained transition curve after averaging over 100 runs with parallel
tempering with replica exchange for a 16x16 Matrix with J=1. The black line
in the middle describes the point of the critical temperature in y direction and
the two black lines at the two neighboring temperatures represent the lowest
and highest slope in the data set

The simulation was run for 15 million steps with a replica exchange after
every 20000 steps. The replica exchange is used for the even and odd systems
alternatively. This was done to prevent random walks over more than one
temperature step at a time. After the system reached thermal equilibrium (at
10 million Monte Carlo steps) the systems for the different temperatures are
saved every 50000 steps.

Figure 19: Avereged values for the transition curve(100 values per tempera-
ture) with tempering and replica exchange for a 16x16 Matrix with J=1. The
intersections of the black lines represent the minimal and maximal value of the
critical temperature for the surrounding averages.

The temperature was chosen to be from 0.2kBT up to 4.0kBT in steps of
0.1kBT . The critical temperature could not be measured precisely but one has
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already information on the interval the critical temperature lies which is:

2.083

kB
< Tc,L=16 <

2.20

kB
(20)

Figure 20: Theoretical curve for the magnetization in the infinite ising model.
Image reproduced from Ref.[10]

In the infinite lattice the total magnetization is zero at temperatures above
the critical temperature and between zero and one for smaller temperatures. We
can improve our estimate of the critical temperature by fitting the theoretical
curve to the data.

Figure 21: Result for the critical temperature for the finite system. The fitting
function was taken in a simplified form from [22]

T is the temperature value from the data, Tc the temperature estimate for
the critical temperature and b the critical exponent. After fitting the function
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on the data, we obtained the results for the critical temperature. The critical
temperature for the system was Tc = 2.101

kB
± 6.210−7. An the value for b was

b = 0.057± 3.610−6 So the critical temperature lies in the interval we obtained
from the averaged data which was 2.083

kB
< Tc,L=16 <

2.20
kB

. The deviation to-
wards the theoretical value for the finite system was 0.19%(17). We can conclude
that we were able to find the critical temperature of the finite system and we
were able to confirm the approximation formula for the critical temperature of
finite square lattice 2D Ising systems.

3.1.5 Data aquisition

To obtain the training and testing data used to train the network, the Monte
Carlo simulation was run without replica exchange. This was done to ensure
reasonable computation times and a sufficient amount of data. The system was
relaxed for fifty thousand steps and then a picture was taken.

3.2 Pattern recognition

To analyze the data from the simulation it was necessary to ensure that the
input data was prepared and one was able to understand what the network
actually learns.

3.2.1 Building the neural network

The pattern recognition was done with four dense layers. The input and out-
put layer consisted of 1024 neurons(one per pixel on the 32x32 lattice). So
the output layer allowed a complete reconstruction of the lattice. The hidden
layers consisted of 4096(first hidden layer) and 1024 (second hidden layer) neu-
rons. The activation functions that were used were sigmoid and tanh functions.
Sigmoid function:

σ(z) =
1

1 + e−z
(21)

Tanh function in exponential notation:

tanh(x) =
ex − e−x

ex + e−x
(22)

Figure 22: Sigmoid and tanh activation functions[23],[20]
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The tanh activation function was needed to obtain outputs for the whole range
of input vallues (-1 and +1). So the tanh is used in the first hidden dense layer
and in the output layer. The sigmoid function weights the input with weights
from zero to one. This was used in the second dense layer to obtain output that
are non integer numbers (-1,+1).Without the sigmoid activation function the
results of training showed a recognition but failed to create a visible pattern.

Figure 23: Training result(upper picture) for a neural network with three tanh
activation functions

The integer values in the picture are caused by the training without a sigmoid
function. The labels which were integer values were accepted as good fitting and
the allowed +1 -1 results from the tanh caused the initial testing results to be
best for integer values.The integer values were assumed by the network because
the labels suggested just values of -1 and +1. When a sigmoid function is added
to the neural network, the results show a larger gradient and produce a clearer
picture of the patch(uncertainties from the recognition can be shown). So we
used for the final neural networks a sigmoid function in one of the hidden layers
to ensure non integer results for the patch recognition.

3.2.2 Data and label preparation

The data was obtained by the Monte Carlo simulation without tempering(to
reduce the run time). To increase the amount of training data, the pictures were
inverted and the spin polarization of the particles was flipped. This doubled the
amount of our data while retaining the same physical properties and the same
information.
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This does not lead to defective data, because it is unimportant to which
polarization the lattice relaxed to and both pictures represent valid physical
states. The dominant relaxation polarization for the lattice is only determined
by chance and by the random starting conditions in the lattice. So this simple
process helps to double our training data without loosing information about the
system but to add further information. The information added information is
that it is equivalent for the physical system to which polarization the equilibrates
to. The labels for the pictures were chosen as pictures with the information of
the underlying structure. The dimension of the output data was equivalent to
the dimension of the training pictures to keep as much information about the
system as possible. The underlying structure/patch was in the first case a cube
with a different coupling constant of Jinner = 2 of size 16x16 compared to the
rest of the lattice Jouter = 1.

The labels were chosen to represent the position of the patch with the differ-
ent coupling constant in the lattice. The outer part of the lattice was chosen to
be the same polarization as the majority polarization of the associated picture.
The inner part was chosen to be the opposite spin for every point on the inner
patch.

Figure 24: Label for the data with the outer part being predominantly negative
polarized

Figure 25: Label for the data with the outer part being predominantly positive
polarized

The so prepared data has to be randomized to prevent any order in the data
which might result in unwanted pattern a neural network could learn. So in
our work we used the list.sort() command from python to randomize the order
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in which the data is presented to the network. To achieve unbiased results we
split the data in two different sets. The first set contained 90% of the data and
was used to train the network. The second data set was never introduced to the
network. This enabled us to test the results of the pattern recognition from the
trained neural network. When the training and testing results diverge, we know
that we did not learn the data correctly. Which means the network learned data
that was explicit for the training data but not the testing data. This preparation
process was not changed during the training of the neural networks because it
achieved proper results.

Other possible label preparations that could have lead to similar or better
results might have been to set the values at the position of the patch to 0 (ran-
dom fluctuations). This can be useful for training data at temperatures between
both critical temperatures, where we have one ordered and one unordered phase.
One could also try and choose the label as the coupling constants at each point
on the lattice and see if the results are still correct.

3.2.3 Patch recognition

The temperature for which the data was simulated was T = 3.2
kB

. The coupling
constants in the system were Jouter = 1 and Jinner = 2. This results in the
critical temperatures of(using equation (12)):

Tc;J=1 =
2.183

kB
(23)

for the outer part. The critical temperature for the patch was :

Tc;J=2 =
4.366

kB
(24)

This means that the outer part will be ordered and the inner part will be
unordered.

The training of the network was done with 7594 pictures for the fixed box.
The size of the testing set was 844. The network was trained for 50 epochs
which means the data was presented to the network repeatedly. The following
pictures show the results of the learning process after the 50 epochs. The data
is shown on the left and the output from the neural network on the right.
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Figure 26: First result for a box with different coupling constants Jinner = 2
and Jouter = 1 at a temperature of T = 3.2

kB

We are able to see a clear picture of the box while still seeing the influence of
the random clustering inside the box. We can say that we were able to recognize
the box properly without loosing much information about the middle part.

3.2.4 Dynamical patch

In the next step we moved the data to resemble the patch placed randomly in
the lattice. This was done to test if it is also possible to detect the noisy signal
everywhere in the lattice.

The boundary condition allows movement of the patch without the loss of
information, since the lattice borders are connected to the periodic continuation
of the lattice (this can be seen in figure (6)).

This random position of the patch is a more realistic behavior when com-
pared to data from real physical systems. The input data from the previous
learning was taken and the patch was moved by a function everywhere in the
lattice. This was permitted because we implemented periodic boundary condi-
tion in the Monte Carlo simulation. The patch was randomly moved in x and
y direction. The range for moving the box was chosen to be x, y = ±8 because
higher values would lead to a overlapping patch because of the boundary condi-
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tions(6). Moving more than ±8 will not lead to useful results. The argument for
this is that for a real measurement this would never happen, since the overlap is
just a result of the periodic boundary conditions and would normally not hap-
pen in real systems. Including overlap data, would only result in the network
having to learn the periodic boundary condition too. With this movement of
the patch, we increased the original data by a factor of 16x16 which lead to over
1 million pictures for training and testing. The training was done with 500k
pictures out of possible 1.2 Million. This was done because the RAM of the
computer was a limiting factor. Another reason why we just used 500k pictures
was that the previous network was able to learn the pattern for the testing sets
with a good prediction on a similar total amount of data given into the network.
The training was done for one epoch which already lasted 3 hours. The testing
was done with 500 unused pictures from the 1 million set.

Figure 27: Test result for a changing box position for the network

Figure 28: Test result for a changing box position for the network

The fitting results all show a clear patch in the lattice. sub pattern and edges
are compared to the static patch less visible but still exist. The patch itself is

26



Pattern recognition in the 2D-Ising model

shown with very little uncertainty and a border region with polarization of zero
is visible. So we can conclude that it was possible to train the network on a
patch in the lattice without known position. Since this change in the position
is a increase in the complexity of the problem, it is logical that the system was
harder to train. This can be seen in the following picture.

Figure 29: Difficulties in some bordering cases

When the patch position approaches the border of the lattice the recognition
lacks accuracy. This can have many different reasons. First of all was the
sampled size for each position in the lattice only about half of what is was
during the first training. This limits the information about that specific site to
the system. Maybe much longer testing for a similar number of epochs compared
to the first training would have reduced those uncertainties even more. But
even in those border cases we were able to identify the pattern in the data very
accurate.

We can conclude that we were able to train a network to recognize a patch
at all possible positions in the lattice. There is still way to improve this recog-
nition by adding more neurons or layers to the system and thus increasing the
complexity the system can learn. Compared to the first testing we lost some
information of the system including the local clustering in the inner patch and a
little bit of the accuracy at the borders. With additional testing time and more
data the results might be improvable.
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4 Conclusion

In this thesis we have investigated the phase transition of the 2D Ising model
with a Monte Carlo simulation. We then used Deep Neural Networks to find
pattern in the simulation data.

To simulate the 2D Ising model, on a finite square lattice, we programmed
a Monte Carlo simulation based on the Metropolis algorithm with replica ex-
change using Python. The critical temperature for the 2D Ising model was
obtained with a fit of the magnetization curve using data from our Monte Carlo
simulation where replica exchange was included to improve the sampling. The
critical temperature for the finite (N=16x16) system was Tc = 2.101

kB
which has

a deviation of 0.19% towards the theoretical value from the formula for the
finite size square lattice(12). This means that we were able to verify our simu-
lation because it led to correct results for the position of the second order phase
transition.

After ensuring that our simulation led to valid results we rescaled the lattice
to a (32x32) square lattice to increase the resolution. The neural networks that
were trained were Deep Neural Networks with two hidden dense layers using a
sigmoid and two tanh functions as activation functions. The neural networks
were trained supervised with labels representing the position and form of the
patch with the different coupling constant. The trained networks were able to
recognize patches with a coupling constant of Jinner = 2 compared to the other
parts of the lattice which had a coupling constant of Jouter = 1. This was done
first for a centralized patch and resulted in a correct recognition of the inner
patch.

A second network, using the same structure as before, was trained to rec-
ognize a patch of same size for different positions on the square lattice. Both
neural networks were able to identify the pattern in the data successfully. We
can conclude that we were able to validate the theoretical formula for the critical
temperature for finite size systems. We were also able to show that Deep Neu-
ral Networks can be used for the recognition of specific patches with different
physical parameters, in our case the coupling constant.

Nevertheless there is still more work to do to examine the limits of pattern
recognition for large temperature interval and different patch sizes. Finally it
seems as if neural networks can be a useful addition for specific physical problems
that have large data sets and uniform pattern.
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5 Appendix

5.1 Code

5.1.1 Simulation

Figure 30: Import functions for the simulation

Figure 31: Matrix initialization
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Figure 32: Energy calculation

Figure 33: Creating of the folders for the pictures

Figure 34: Creating of the folders for the pictures
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Figure 35: Monte Carlo algorithm
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Figure 36: Metropolis algorithm with replica exchange
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5.1.2 DNN

Figure 37: Import of the training and testing data with labels(the folders were
presorted to only have the outside plus or the minus orientation)

Figure 38: Shuffle of the data with the labels to randomize the positions and
prevent the network from learning just the changes in the input data(pm and
mp cases)
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Figure 39: Creation of the data for a box with random position in the lattice

34



Pattern recognition in the 2D-Ising model

Figure 40: Building of the layers for the final neural network,fitting on the
training data and testing with unlabeled data

Figure 41: training for the neural network(training for the fixed box)
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5.2 Training results

Figure 42: Training result(upper picture) for a neural network with three tanh
activation functions
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Figure 43: More training results for the first network with data on the left and
the training result on the right

Figure 44: More training results for the second network with data on the left
and the training result on the right
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6 Zusammenfassung

Diese Bachelorarbeit behandelt die Simulation des 2D Isingmodells mit Hilfe
einer Monte Carlo Simulation, sowie von Mustererkennung zu Simulationsdaten
des 2D Isingmodells mit tiefen Neuronalen Netzwerken(Deep Neural Networks).
Im ersten Schritt dieser Arbeit wurde das 2D Isingmodell eingeführt und deren
Lösungen erörtert. Im nachfolgenden Schritt wurde eine Lösung für beschränkte
und unendliche Systemgrößen des 2D Isingmodells eingeführt. Dannach wurde
mit Hilfe einer, mit Python erstellten, Monte Carlo Simulation mit Parallel
Tempering(PT), die Magnetisierung des Systems zu verschiedenen Tempera-
turen gemessen und die Simulationsdaten aufgetragen, gemittelt und gefittet.
Die Systemgröße betrug hierbei 16x16 Spins. So konnte zum einen die Lösung
der Formel für begrenzte Isingsysteme bestätigt werden und zum anderen un-
sere Simulation geprüft, sowie die dazu gehörige kritische Temperatur bestimmt
werden. Diese betrug für das beobachtete System Tc = 2.101

kB
, was einer

Abweichung von 0.19% zu dem Theoriewert entspricht.
Nun konnten wir mit Hilfe des Wissens über die kritische Temperatur Daten zu
unterschiedlichen Temperaturen aufnehmen und angemessen einordnen. Dies
konnte nun ohne Parallel Tempering gemacht werden, da die kritische Tem-
peratur bereits bekannt war. Durch das Wegfallen von Parallel Tempering
in der Simulation, konnte die Laufzeit erheblich verbessert werden, und ein
größeres 32x32 System für die Simulation zur Datenaufnahme verwendet wer-
den. Das Isinggitter, welches zum Training von Musttererkennung verwen-
det wurde, besteht aus zwei unterschiedlichen Bereichen mit unterschiedlichen
Kopplungsstärken, von welchen die kritische Temperatur des Systems abhängt.
Nach Datenaufnahme konnten wir unser Netzwerk auf einen zentralen Kas-
ten mit unterschiedlicher Kopplungskonstante trainieren und erreichten hierbei
gute Ergebnisse. Die Fläche des Kastens konnte deutlich besser aufgelöst wer-
den und die Abgrenzung zwischen beiden Kopplungskonstanten wurde deutlich
klarer sichtbar, als es in den Daten der Fall war. In einem weiteren Schritt
erhoben wir Simulationsdaten zu einem Kasten, welcher sich nicht mehr zentral
im Gitter befand, sondern frei innerhalb des Gitters platziert wurde. Nachdem
auch diese Daten in einem Neuronalen Netzwerk gelernt wurden, kamen wir zu
dem Ergebnis, dass eine gute Mustererkennung weiterhin möglich ist. Obwohl
die Mustererkennung weiterhin deutlich sichtbar war und auch die neuronalen
Netzwerke, die gleichen Ausmaße besaßen, kam es im Vergleich zu der ersten
Mustererkennung zu schlechterer Erkennung des Kastens. Es kam im
Vergleich zur ersten Erkennung zu einem Informationsverlust in der Darstellung
der Ergebnisse, was mit der erhöhten komplexität der Datenstruktur zu erklärt
werden könnte.
Zusammenfassend kann man sagen, dass es uns möglich war, das 2D Isingmodell
genauer zu untersuchen und aufgestelte Gleichungen zu überprüfen, des
Weiteren gelang es uns zu zeigen, dass Neuronale Netzwerke bei
physikalischen Systemen wie dem 2D Isingmodell für Mustererkennung eine
künftige und nützliche Rolle spielen kann.
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und Unklarheiten. Bedanken möchte ich mich zusätzlich auch bei Benjamin
McKeever und Davi Rodrigues für ihre Hilfe bei thematischen Fragen, sowie an
alle Korrekturleser. Ein abschließender Dank geht auch an meine Familie, die
mich im Verlauf der Arbeit tatkräftig unterstützt hat.
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