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Abstract
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1. Introduction

Every day countless amounts of data are created in our world. Thus, new
storage devices are always required, which are smaller, faster and more stable
than the preceding ones. In the research field of spintronics, spin properties
are combined with electronics to tackle this problem [1–3]. The quantum na-
ture of the spin allows to define data on small scales and to make memories
stable and non-volatile [4]. Further spintronics devices do not require currents
to maintain their state, which makes them highly energy efficient [5]. Spin
currents allow to transport the spin states and thus the data through a ma-
terial [6, 7]. Therefore, spintronic memory devices will be smaller, faster, and
more stable compared to conventional electronic ones.

For a long time ferromagnets (FMs) have been the key component in spin-
tronics devices [8–10]. In such FMs spins prefer to be aligned parallel to their
neighbours [11]. Consequently, FMs have a total net magnetization and this
magnetization can be manipulated by external magnetic fields or currents [12].
Information can be stored on a FM by defining bits 1 and 0 over two opposite
directions of the magnetization [8] and it is possible to write and read the
information easily [13–18]. However, FMs also bring some problems within
their use as memory devices. The magnetization of the FM couples to all
external magnetic fields [11]. External fields close to a FM memory and elec-
tromagnetic noise therefore may destroy the data. With the same argument
the magnetic field coming from the FM itself (stray field) is a problem. The
stray field of each magnetic bit will influence the other neighbouring bits and
in order to minimize this effect the bits have to be placed sufficiently far away
from each other. This gives a limitation in the operating speed of future FM
devices [19]. Another issue is that the writing speed of FM devices is limited
to the GHz regime and require large energies to exceed that limit [20–23].
This provides another limitation in how fast FM devices can be made in the
future. For these reasons other materials are studied to replace FMs in mem-
ory devices and antiferromagnets (AFMs) are a promising candidate to fulfill
this task [24–28] .

In an AFM spins align in an order such that the net magnetization of the
AFM vanishes [29]. Information can then be stored by different orientations
of that magnetic order [30, 31]. Due to the missing net magnetization, AFMs
are not (or only weakly) influenced by disturbing magnetic fields [29] and thus
more stable than FMs. Further AFMs do not produce stray fields since they
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1. Introduction

have no magnetization, which allows to place AFM bits much closer to each
other compared to a FM memory [30]. AFM memory devices can therefore
be made much smaller than FM ones. The natural frequencies of AFMs are
usually in the THz regime [32, 33]. Thus, an AFM memory can be up to a
thousand times faster than the FM ones. An important challenge is to under-
stand the domain structure of AFMs as magnetic domains play a major role in
spintonics memory devices [34–36]. In FMs the magnetic domains are formed
due to the demagnetization energy [37] which provides a long range interaction
in the crystal. This motivates the idea, that in general long range interactions
are responsible for magnetic domains or at least have a significant influence
on the domain structure. AFMs do not have a demagnetization energy [29]
but still appear in multi-domain states [38] which then must have a different
origin than in FMs. One long range interaction appearing in magnetic crystals
comes from the magnetoelastic coupling. Elastic effects are always of a long
range nature because deformation of an object at one position requires that
the whole object is deformed in order not to break [39]. Due to a coupling of
magnetic and elastic degrees of freedom [40–42] these long range interactions
will also affect the magnetic profile. It has been shown that magnetic domains
are formed in an AFM in presence of magnetoelastic interactions [38, 43]. To
understand such an AFM multi-domain system we therefore have to study
how magnetoelastic effects influence the domain structure and domain walls
itself.

This work will focus on effects of the magnetoelastic coupling of a single do-
main wall in an infinite collinear AFM. We assume to be far below the critical
temperature so we can apply a micromagnetic approach to describe the mag-
netic system [44]. The elastic system will be described by the infinitesimal
strain theory as we assume only small deformations of the crystal [45]. A
more detailed description of the system and how equilibrium states are found
is given in chapter 2. In chapter 3 we study how the magnetoelastic coupling
influences the energy of a domain wall of a 180° type (Sec. 3.1) and 90° type
(Sec. 3.2). Also, in the chapter we determine the energy scaling with the
strength of the coupling and compare the energies of the respective domain
walls. Changes in the shape or thickness of a magnetic domain wall are in-
vestigated in chapter 4 with different types of strains and for a 180° domain
wall (Sec. 4.1.1 and 4.2.1) and a 90° domain wall (Sec. 4.1.2 and 4.2.2). In
chapter 5 we compute the shape of a closed 180° domain wall loop in presence
of the magnetoelastic coupling. The mathematical foundation for this is build
in sec. 5.1 and the energy of the loop is determined in sec. 5.2. The equi-
librium shape of the loop is then calculated from that energy in sec. 5.3 and
5.4. Finally, in chapters 6 and 7 we show that strains can be used to pin a 90°

and 180° domain wall respectively (sec. 6.1 and 7.1) and determine the forces
which have to be applied to overcome the pinning (sec. 6.2 and 7.2).
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2. Treatment of Magnetoelastic
Coupling in Collinear
Antiferromagnets

In an AFM the spins align in an order such that the net magnetization
of the system is 0 in the equilibrium [29]. Thus, we define two ferromag-
netic sublattices A and B with magnetizations MA and MB and the relation
|MA| = |MB| =: Ms. We describe the system by the antiferromagnetic order
parameter (Néel vector) n = (MA −MB)/(2Ms) and the normalized magne-
tization m = (MA + MB)/(2Ms). Note that we could also do the subtraction
in n the other way around and the physics has to be the same. The Néel
vector therefore always has a Z2 symmetry and it will thus appear at least
quadratically in the energy density. We assume that the two sublattices are
in a perfect antiparallel alignment where we have m = 0 and then n2 = 1.
Further we will consider an infinite AFM and work in a micromagnetic picture
where MA and MB are continuous vector fields [46] which live in a Sobolev
space [47].The Néel vector then is also a vector field n : R3 → S2 with the same
properties. As for the magnetization in FMs, the Néel vector has an exchange
stiffness and gives minimal energy if it is constant over the whole space, as
long as there are no other interactions present. Also crystal symmetries lead to
anisotropies of the Néel vector i.e. axes along which the Néel vector minimizes
(easy directions) or maximizes (hard directions) the energy [48]. In our case
we consider an anisotropy with a strong hard axis along the z-direction and
one or two easy axes in the xy-plane. The contributions of these interactions
to the energy density are

Wexch =
1

2
A∂jn∂jn

Wanis =
1

2
K‖n

2
z −K2f(nx, ny)

(2.1)

with A > 0 and K1 � K2 > 0. The Einstein sum convention was used
and the sums goes over x, y and z. The dimensionless anisotropy function
f : [−1, 1]2 → R≥ will be specified for the particular problems respectively.
Since n is not necessarily differentiable, the derivatives ∂i correspond to weak
derivatives.
Another contribution into the energy of the crystal apart from the magnetic
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2. Treatment of Magnetoelastic Coupling in Collinear Antiferromagnets

ordering comes from deformations of atoms in the lattice from equilibrium. We
assume that the AFM crystal is homogeneous. On length scales, where the
micromagnetic approach is valid, the displacements of the atoms are small and
we can use the concepts of linear elasticity [49]. Deformations in the crystal
are then also described by a continuous vector field u : R3 → R3, which we
call displacement. In a deformed medium it returns the vector pointing from
the initial equilibrium position of each space point to its current one. The
strains of the crystal in this theory are then given by a tensor û : R3 → R3×3

over the relation uij = 1/2(∂iuj + ∂jui) for i, j ∈ {x, y, z}. In its most general
form, the energy density of the deformed system within the regime of linear
elasticity and in terms of the strain tensor is given by

Welas = µijkluijukl. (2.2)

[39, 50] For simplicity we will consider an isotropic medium i.e. a medium,
where deformations in all directions are similar and the energy density is in-
variant under all rotations. In this case we have µijkl = µ(δikδjl + δilδjk) +
2µν

1−2ν δijδkl [39, 50] and therefore

Welas =
µ(1− ν)

1− 2ν
(u2
xx + u2

yy + u2
zz) +

2µν

1− 2ν
(uxxuyy + uyyuzz + uzzuxx)

+ 2µ(u2
xy + u2

yz + u2
zx),

(2.3)

with the shear modulus µ and the Poisson ratio ν.
Magnetic and elastic degrees of freedom are coupled [40] and we can formulate
the contribution to the energy density in the general form

Wme = λijkluijnknl, (2.4)

where strains and Néel vector are written in their lowest possible order (cf. [51]
for FMs). Within the picture of an elastically isotropic crystal we can specify
this term to

Wme = λ
[
(uxx − uyy)(n2

x − n2
y) + 4nxnyuxy

]
. (2.5)

(cf. [52, 53]) where we neglected terms with nz due to the strong anisotropy
along z.
In order to analyse the influence of the magnetoelastic interaction in multi-
domain systems, we would have to minimize the energy functional, including
all the mentioned contributions in the integrand, with respect to Néel vector

4



2. Treatment of Magnetoelastic Coupling in Collinear Antiferromagnets

and strains for a given multi-domain system. This turns out to be quite
difficult due to the complexity of the energy density and the number of degrees
of freedom in the Néel vector and strain tensor. We therefore attempt a
different approach in which we ”guess” a solution for the multi-domain system
and then compute corrections to it. Equation 2.5 suggests that in presence
of a magnetic ordering the magnetoelastic coupling produces strains inside of
the AFM. In AFM multi-domain systems and on length scales much larger
than the sizes of domain walls we can assume that the strains correspond to a
magnetic profile of a step-like domain wall. This idea has already been used in
studies for FMs [54,55] and therefore motivates to do the same here. A domain
wall can then be viewed as an elastic defect and we can find the strains of the
different domains with a method similar to the Eshelby inclusion [56,57]. We
first consider the strains which would correspond to a mono-domain state in
each domain respectively. They have the form

uxx = − λ

2µ
(n2
x − n2

y)

uyy =
λ

2µ
(n2
x − n2

y)

uxy = − λ

2µ
(2nxny)

(2.6)

(cf. appendix A) for each domain where all other strain tensor components are
0. At the domain wall the strain tensor components flip step-like between the
strains corresponding the two domains. In the following we call such a strain
profile spontaneous strain ûspon. When all domains deform independently
according to the respective spontaneous strains, it is possible that the domains
deform into each other or break at some positions. This is not possible in
reality and produces stresses in the system. Mathematically, we describe this
over the incompatibility of the strains. Due to their definition as a symmetric
gradient strains have to be ”compatible” i.e.

inc(û) := (−εiklεjmn∂k∂muln)i,j=x,y,z = 0.

In a situation of nonphysical deformations, when the spontaneous strains re-
quire additional stresses, this incompatibility operator does not return 0 at the
domain wall, when it is applied onto the spontaneous strain. Therefore, we
need to add another strain ûcomp in the total strain profile which compensates
the incompatibility of the spontaneous strain at the domain walls, such that
the incompatibility of the sum of both strains is 0. Physically the new strain
arises from the nonzero stress. On shorter length scales, where the domain wall
cannot be considered step-like anymore we receive another additional strain
contribution from the magnetoelastic coupling localised at the domain wall,
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2. Treatment of Magnetoelastic Coupling in Collinear Antiferromagnets

to account for the inhomogeneities of the Néel vector at the domain walls. We
call these strains relative strains ûrel and compute them by minimizing the
energy functional with respect to their corresponding displacement field. For
this we first rewrite the elastic energy

Welas =Wspon
elas +Wrel

elas + µ(uspon
xx − uspon

yy )(urel
xx − urel

yy), (2.7)

where Wspon
me is the elastic energy if we only apply the spontaneous strain and

similar for Wrel
elas. The compensating strains were absorbed in ûspon and we

also used uspon
xx + uspon

yy = 0 which can be obtained from the solution of the
homogeneous state. From this term together with the other energy contri-
butions we can now write down the equilibrium conditions for our system by
minimizing the energy functional with respect to the Néel vector n and the
displacement associated to the relative strains urel. The differential equations
we have to solve then are

0 = n×
[
δ
∫

(Wexch +Wanis +Wme)d
3r

δni
ei

]
(2.8)

∇2urel +
1

1− 2ν
∇(∇ · urel) =

f

µ
− (ex∂x − ey∂y)(u

spon
xx − uspon

yy ), (2.9)

for fj = δ
∫
Wrel

med
3r/δurel

j . This reduces the problem from the initial 3+9

degrees of freedom to 3+3. We can even go further by considering n2 = 1
together with the strong hard z-axis. The Néel vector will always be aligned
in the xy-plane and has a constant length i.e. it is fully described by an angle
in the plane. Therefore we write n = ex cosφ+ ey sinφ and the corresponding
energy terms then turn into

Wexch =
1

2
A(∇φ)2

Wanis = −K2f(φ)

Wme = λ [(uxx − uyy) cos(2φ) + 2uxy sin(2φ)] ,

for a new scalar field φ : R3 → R. A functional minimization with respect to
φ rephrases equation 2.8 and yields

A∇2φ = −K2
df

dφ
+ 2λ [−(uxx − uyy) sin(2φ) + 2uxy cos(2φ)] . (2.10)

Equations 2.9 and 2.10 now allow us to study the effect of the magnetoelastic
coupling on multi-domain systems for which we begin with a study of flat
static domain walls.
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3. Energy and Orientation of
Magnetic Domain Walls

3.1. 180° Domain Wall with Uniaxial Anisotropy

In an infinite AFM with only exchange interaction and anisotropy we have
a global translational and rotational invariance of the space variables. In
other words, the energy does not change under the transformation φ(r) →
φ(R̂ · r + ρ) ∀r,ρ ∈ R3, R̂ ∈ SO(3) in the energy density. Thus, it does not
make a difference, where the domain wall is located in a two domain system
with a flat domain wall. We cannot generalize this statement to the term
with the magnetoelastic coupling, due to the interaction of the independent
degrees of freedom. Therefore, the first thing to investigate is whether the
position of a domain wall has an influence on the energy due to the presence
of magnetoelastic interactions. Since the AFM in our model is infinite we still
have translational invariance and only a rotation of the domain wall in the
easy plane may produce a new effect. We start by looking at a 180° domain
wall in the system which was described in the previous section. To stabilize
the domain wall we introduce a uniaxial anisotropy along the x-axis i.e. we
use f := f180 with

f180(nx, ny) =
1

2
n2
x

f180(φ) =
1

2
cos2 φ

df180

dφ
= −1

2
sin(2φ).

(3.1)

The equilibrium domains in this system are φ = 0 and φ = π and the we
consider a magnetic profile with a flat domain wall between these two equilib-
rium domains. Both domains have the same spontaneous strain, so ûspon is a
constant with

uspon
xx − uspon

yy = −λ
µ

(3.2)

and all other tensor components equal 0. The incompatibility of the strain at
the domain wall is therefore 0 for all orientations of the domain wall and we
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3. Energy and Orientation of Magnetic Domain Walls

have no contribution of a compensating strain. For the additional strains at
the domain wall we describe the system in the domain wall coordinates (ξ, η,
z), where ξ is the direction normal to the domain wall and η is orthogonal to
ξ and z. The relation between (ξ, η) and (x, y) is a rotation by an angle ψ
about the z-axis

ξ = x cosψ − y sinψ

η = x sinψ + y cosψ.

The transformation (x, y) → (ξ, η) affects only the magnetoelastic coupling
term in the energy density because the purely elastic energy is invariant under
rotations and φ as a scalar field also does not change. The strains of the
coupling term in the new coordinate system are related to the ones in the
initial system over

uξξ − uηη = (uxx − uyy) cos(2ψ)− 2uxy sin(2ψ)

2uξη = (uxx − uyy) sin(2ψ) + 2uxy cos(2ψ)
(3.3)

and equations 2.9 and 2.10 become

A∇2φ = −1

2
K2 sin(2φ) + 2λ [−(uξξ − uηη) sin(2(φ+ ψ)) + 2uξη cos(2(φ+ ψ))]

(3.4)

∇2urel +
1

1− 2ν
∇(∇ · urel) =

1

µ
f (3.5)

where ∇ consists of derivatives in the new coordinate system. f takes the form

fξ = −λ [∂ξ cos(2(φ+ ψ)) + ∂η sin(2(φ+ ψ))]

fη = −λ [∂ξ sin(2(φ+ ψ))− ∂η cos(2(φ+ ψ))]

fz = 0

At ξ → ±∞ the angle φ and û converge to the values of the respective equilib-
rium domain. In this case the boundary conditions for the 180° domain wall
are

ξ → ±∞ : φ→ 0, π, ∂ξφ→ 0, û→ ûspon.

Since the strains have the value of the spontaneous strain at infinity, ûrel

approaches 0 at infinity. With this condition we can solve eq. 3.5 in the Fourier

8



3. Energy and Orientation of Magnetic Domain Walls

space to receive ûrel (see appendix B). When we further define νe := 1 + 1
1−2ν

the solution is

urel
ξξ = − λ

µνe
[cos(2(φ+ ψ))− cos(2ψ)]

urel
ξη = − λ

2µ
[sin(2(φ+ ψ))− sin(2ψ)]

(3.6)

and all other strains tensor components are 0. This solution can be used to
receive a closed equation for φ by plugging û = ûspon + ûrel into eq. 3.4

A∂2
ξφ =

1

2
K2 sin(2φ) + 2

λ2

µ
sin(2(φ+ ψ))

[
cos(2ψ) +

1

νe
(cos(2(φ+ ψ))− cos(2ψ))

]
− 2

λ2

µ
cos(2(φ+ ψ)) [sin(2ψ) + (sin(2(φ+ ψ))− sin(2ψ))]

=
1

2
K2 sin(2φ)− 2

λ2

µ

(
1− 1

νe

)
sin(2(φ+ ψ)) [cos(2(φ+ ψ))− cos(2ψ)] .

(3.7)

Together with the boundary conditions for φ we can calculate the first integral
of the differential equation

1

2
A(∂ξφ)2 =

1

2
K2 sin2 φ+

λ2

2µ

(
1− 1

νe

)
[cos(2(φ+ ψ))− cos(2ψ)]2 =:WDW

(3.8)

The lefthandside of eq. 3.8 corresponds to the exchange energy and the
righthandside to the anisotropy and the minimum of elastic and magnetoelas-
tic energy with respect to strains. The energy density W of the system after
minimization with respect to the strains is therefore given byW = 2WDW. On
the first sight, it might seem as if W is still invariant under the space variable
transformation φ(r) → φ(R̂ · r + ρ) as discussed in the beginning because it
now only depends on φ. This is not the case because such a transformation
also changes the boundary conditions and therefore the definition of the axis
ξ and the angle ψ which is part of the energy density W. We therefore know,
that the energy of the magnetoelastic system is influenced by the alignment
of the domain wall. To determine how the energy of the system depends on
the domain wall orientation ψ we have to integrate W along the ξ-axis for
different angles of ψ to receive the energy per unit area W . The integral can
be simplified to an integral of φ over

W =

∫ ∞
−∞
Wdξ =

∫ π

0
W dξ

dφ
dφ =

∫ π

0
W(∂ξφ)−1dφ =

∫ π

0
2
√
A · WDWdφ,

(3.9)
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3. Energy and Orientation of Magnetic Domain Walls

where without loss of generality derivative of φ was chosen to be positive.
The integral of eq. 3.9 is computed numerically and normalized by the energy
corresponding to the ψ = 0 solution. For a qualitative analysis, we set the
parameters A and K2 to 1 and 1/νe = 1/2 as the Poisson ratio varies between
0 and 0.5 for most materials [58]. The specific choice for νe will only influence
the numeric values of the energy but no qualitative results. The integral
solutions for different dimensionless strengths of magnetoelastic coupling u0 :=
λ2/(µK2) are shown in Fig. 3.1, where we can observe energy minima for
ψ = π/4 and ψ = 3π/4. This can be generalized to energy minimal for all
ψ = π/4 + π/2 · N. We therefore have a domain wall anisotropy and domain
walls prefer to be aligned along the (x+y)-axis or (x−y)-axis. This anisotropy
comes from the internal strains localized at the domain wall which are different
for the different domain wall orientations. To verify this result also for finite
samples, the system was also simulated with MuMax3 [59]. The details are
presented in the appendix C.1 and the simulations provided similar results for
the domain wall anisotropy. Due to the choice of an 180° domain wall we did
not have any incompatibilities and no effects of the compensating strains. In
the next section we investigate how the domain wall anisotropy is affected in
presence of possible incompatibilities.

u0=0.1

u0=1

u0=2

u0=5

0 π

4
π

2
3 π
4

π

0.70

0.75

0.80

0.85

0.90

0.95

1.00

DW angle ψ

W
(ψ
)
/
W
(0
)

Figure 3.1.: Energy per unit area in the ηz-plane for a 180° domain wall plotted
against the domain wall orientation angle ψ for different values
of the dimensionless magnetoelastic coupling parameter u0. The
errors from the numerical integration are to small to be shown.
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3. Energy and Orientation of Magnetic Domain Walls

3.2. 90° Domain Wall with In Plane Anisotropy

To also study the effects of incompatibility on the equilibrium domain wall
orientation, we have to consider a non 180° domain wall. The simplest case is
a 90° wall which we stabilize with two orthogonal easy axes in the xy-plane.
Thus, we use the anisotropy function f := f90 with

f90(nx, ny) =
1

4

(
n4
x + n4

y

)
f90(φ) =

1

4

(
cos4 φ+ sin4φ

)
df90

dφ
= −1

4
sin(4φ).

(3.10)

The possible domains in this case are φ = 0, π/2, π, 3π/2. For a domain wall
from φ = 0 to φ = π/2 along the axis ξ = x cosψ + y sinψ as in sec. 3.1 the
spontaneous strains are

uspon
xx =

λ

2µ
Θ

(
ξ

xel

)
uspon
yy = − λ

2µ
Θ

(
ξ

xel

) (3.11)

and 0 for all other components of the strain tensor. The length scale xel is

chosen to be significantly larger than the domain wall width xDW =
√

A
K2

(For

more details on the domain wall width see chapter 4.) and the shape function
Θ is defined as a sign function (Θ(α) := α/|α| for α 6= 0). The incompatibility
of such a spontaneous strain is

(inc (ûspon))ij = −εiklεjmn∂k∂muspon
ln

= −εixyεjxy∂x∂xuspon
yy − εiyxεjyx∂y∂yuspon

xx

= −δizδjz(∂2
xu

spon
yy + ∂2

yu
spon
xx )

= −λ
µ
δizδjz

(
cos2 ψ − sin2 ψ

x2
el

)
δ′
(
x cosψ − y sinψ

xel

)
= − λ

µx2
el

cos(2ψ)δizδjzδ
′
(
x cosψ − y sinψ

xel

)
The strain to compensate the incompatibility fulfils inc (ûcomp) = −inc (ûspon)
and it can be determined over the formula introduced by Eshelby [60]

ûcomp(r) =
1

4π

∫
R3

d3r′
inc (ûcomp(r′))− tr [inc (ûcomp(r′))] I3×3

|r− r′|

11



3. Energy and Orientation of Magnetic Domain Walls

with the 3 × 3 identity matrix I3×3. Without further calculations we see
ucomp
xx = ucomp

yy are the only nonvanishing components of ûcomp. For them we
find

ucomp
xx (r) = − λ

4πµx2
el

cos(2ψ)

∫
R3

dx′dy′dz′
δ′ ((x′ cosψ − y′ sinψ)/xel)√

(x− x′)2 + (y − y′)2 + (z − z′)2

= − λ

4πµx2
el

cos(2ψ)

∫
R3

dξ′dη′dz′
δ′ (ξ′/xel)√

(ξ − ξ′)2 + (η − η′)2 + (z − z′)2

=
λ

4πµ
cos(2ψ)

∫
R2

dη′dz′
ξ/xel

(η′2 + z′2)3/2

=
λ

2µ
cos(2ψ)Θ

(
ξ

xel

)
The strains go quadratically into the energy density (cf. equations 2.3 and 2.7)
and the energy of the domain wall system is therefore minimal at the minima
of cos2(2ψ) i.e. for the same orientations as the 180° domain wall (ψ = π/4 +
π/2·N) when the incompatibility of the spontaneous strain is zero. The relative
strains at the domain wall were neglected because the energy of strains located
at the domain wall scales with the size of the wall. The energy contribution
from the compensating strains on the other hand scales with the domain size
because the strains itself are constant in the respective domains. Usually the
size of the domains much larger (infinite in our case) than the domain wall and
the contribution of compensating strains is therefore dominant and responsible
for the domain wall anisotropy. The system was also simulated (appendix
C.2), where we receive the same result and demonstrate the dominance of
incompatibility over relative strains in the domain wall anisotropy. This result
implies, that the magnetoelastic coupling induces an anisotropy for all kinds of
flat domain walls in the system either from incompatibilities or relative strains
at the domain wall.

3.3. Minimum Energies of the Domain Walls

When the energies of the domain walls are minimal i.e. the domain wall
is placed on of its axes it is possible to compare both 180° and 90° cases,
because both systems have no incompatibilities of spontaneous strain. In
order to compare the domain wall energies in our two systems quantitatively,
we compute the energy for both the 90° and 180° domain wall without loss of
generality for ψ = π/4.
For the 180° domain wall we have to compute the integral from eq. 3.9 with
the fixed value of ψ. We receive

12



3. Energy and Orientation of Magnetic Domain Walls

W180 =

∫ π

0
2

√(
1

2
K2 sin2 φ+

λ2

2µ

(
1− 1

νe

)
sin2(2φ)

)
=
√

2AK2

(√
(1 + 4uν) +

1

2
√
uν

arcsinh(2
√
uν)

) (3.12)

with uν := u0(1− 1/νe). For the energy of the 90° domain wall, we still have
to reformulate the problem to have a closed equation for φ. The boundary
conditions for a 90° domain wall system can be formulated in the following
way

ξ → ±∞ : φ→ 0, π/2, ∂ξφ→ 0, û→ ûspon

with 2uspon
ξη = λ/µ Θ and 0 for all the other components of the matrix. Such

spontaneous strain profile follows directly from eq. 3.3 and 3.11. First we
have to determine the relative strains which works similar to sec. 3.1 with
the condition that ûrel approaches 0 at ξ → ±∞. The calculations in Fourier
space are again in the Appendix B. Note that we only write Θ for the shape
function and the argument ξ/xel is included implicitly. The strains then take
the form

uξξ =
λ

µνe
sin(2φ)

uξη = − λ

2µ
[cos(2φ) + Θ] .

(3.13)

Similar to sec. 3.1 we find a closed equation for φ by plugging û = ûspon + ûrel

into eq. 3.4.

A∂2
ξφ =

1

4
K2 sin(4φ) + 2λ

[
−(uξξ − uηη) sin(2(φ+

π

4
))

+2uξη cos(2(φ+
π

4
))
]

=
1

4
K2 sin(4φ)− 2

λ2

µ

1

νe
cos(2φ) sin(2φ)

− 2
λ2

µ
sin(2φ) [Θ− (cos(2φ) + Θ)]

=
1

4
K2 sin(4φ) + 2

λ2

µ

(
1− 1

νe

)
sin(2φ) cos(2φ)

(3.14)

Together with the boundary conditions for φ we can determine the first integral
to reformulate the problem in a first order differential equation. The result is

13



3. Energy and Orientation of Magnetic Domain Walls

1

2
A(∂ξφ)2 =

1

8
K2 sin2(2φ) +

λ2

2µ

(
1− 1

νe

)
sin2(2φ)

=

(
1

8
K2 +

λ2

2µ

(
1− 1

νe

))
sin2(2φ)

(3.15)

The energy of the domain wall can be found with a similar integration of φ as
before but now the integration goes from 0 to π/2 and for WDW we use the
righthandside of eq. 3.15. The result of the integration leads to the energy
per unit area

W90 =

∫ π/2

0
2

√
A

(
1

8
K2 +

λ2

2µ

(
1− 1

νe

))
sin(2φ)dφ

= 2

√
A

(
1

8
K2 +

λ2

2µ

(
1− 1

νe

))
=

√
AK2

2
(1 + 4uν).

(3.16)

We can directly see that the energy of the 180° domain wall is larger than the
energy of the 90° wall for all values of uν . The ratio of both energies reads as

W180

W90
= 2 +

arcsinh(2
√
uν)√

uν(1 + 4uν)
(3.17)

and is plotted in Fig. 3.2. For uν → 0 i.e. λ→ 0 the ratio is 4 due to the dif-
ferent anisotropies. In the opposite case uν →∞ (λ→∞) the ratio converges
to 2. A purely magnetoelastic 180° domain wall can therefore energetically
be decomposed into two 90° domain walls. Away from the domain wall easy
axes this result will not hold any more. The strains of the 180° domain wall
are only located at the domain wall and therefore its energy is proportional
to the size of the wall. In the 90° case we have incompatibilities and com-
pensating strains whose energy is proportional to the domain size, as already
discussed in the previous chapter. If, as usual, the domains are much larger
than the domain wall, the energy contribution to compensate incompatibili-
ties will lead to larger energies of the 90° domain wall. In the limits we still
have limuν→0W180/W90 = 4 but in the other direction limuν→∞W180/W90 = 0
because the compensating strains are proportional to the magnetoelastic cou-
pling strength.
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3. Energy and Orientation of Magnetic Domain Walls
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W
18
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/
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Figure 3.2.: Ratio of the energies per unit area of a magnetoelastic 180° domain
wall over a magnetoelastic 90° domain wall. The ratio starts at 4
with zero magnetoelastic coupling and converges to 2 at infinity.
The plotted function is written in eq. 3.17.

At this point we found the orientations of the domain walls with minimal
energies and further computed these energies, but have no information about
the domain wall profile. Therefore, in the next chapter we will study the
influence of the magnetoelastic coupling on the profile of the respective domain
walls and determine how the size of the domain walls change.
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4. Domain Wall Thickness

When the spontaneous strains are fixed, they act as an additional uniaxial
anisotropy for the Néel vector along the axis corresponding to the spontaneous
strain. We therefore expect the domain wall profile to change and the domain
wall to become ”thinner” when the magnetoelastic coupling strength and thus
the magnitude of the strains increases. In the following this effect will be
studied quantitatively. First we look on the change of the domain wall profile
for systems with only spontaneous strains. Then we do the same with the full
strain distribution, which were determined in sections 3.1 and 3.2, when the
domain wall is aligned along an easy direction.

4.1. Spontaneous Strain Profile

4.1.1. 180° Domain Wall with Uniaxial Anisotropy

We start with the investigation of the domain wall shape for the 180° domain
wall. We use the anisotropy function f180 which provides uniaxial anisotopy
along the x-axis. The axis of the domain wall normal again will be called ξ
and lies in the in the xy-plane. In this subsection ξ can be chosen arbitrarily
but will be specified in the following ones. Let us fist consider the case without
magnetoelastic coupling λ = 0. The angle φ corresponding to minimal energy
can then be obtained from equation 2.10 and is given by

A∂2
ξφ =

1

2
K2 sin(2φ). (4.1)

The boundary conditions for a 180° domain wall in the system can be written
as φ(ξ → −∞) = 0, φ(ξ →∞) = π and ∂ξφ(ξ → ±∞) = 0. These conditions
allow us to write the the first integral of eq. 4.1

1

2
A(∂ξφ)2 =

1

2
K2 sin2 φ. (4.2)

For a domain wall from φ = 0 to φ = π, as we increase ξ, the derivative of φ
is always positive. Thus, we take the positive square root of eq. 4.2 and solve
it for a domain wall centered at ξ = 0 without loss of generality. The solution
for φ then is
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4. Domain Wall Thickness

φ = 2 arccot

(
exp

[
−
√
K2

A
ξ

])
(4.3)

The solution yields a characteristic length scale for the two domain system
which describes how broad the domain wall is. We therefore call it the domain
wall width xDW :=

√
A/K2. In terms of the Néel vector the solution is

nx = cos

(
2 arccot

(
exp

[
− ξ

xDW

]))
= − tanh

(
ξ

xDW

)
ny =

√
1− tanh2

(
ξ

xDW

)
= sech

(
ξ

xDW

) (4.4)

When the magnetoealstic coupling is turned on again (λ 6= 0) we receive an
additional term in the equation for φ. The two domains in the system are
n = ex and n = −ex so we apply the spontaneous strain uxx − uyy = −λ/µ
and all other components of the strain tensor are set to 0. Further we define the
dimensionless magnetoelastic coupling u0 := λ2/(µK2) to receive the equation
for φ from equation 2.10

x2
DW∂

2
ξφ =

1

2
sin(2φ) + 2u0 sin(2φ)

=

(
1

2
+ 2u0

)
sin(2φ).

(4.5)

Again we can compute the first integral of the differential equation. As a
boundary condition we require that φ does not change any more for large
values of |ξ| as in the case without coupling. The result then is

1

2
x2

DW(∂ξφ)2 =
1

2
(1 + 4u0) sin2 φ. (4.6)

This differential equation can be solved similar as for the zero coupling case
(cf. eq. 4.3 and 4.4) and the solution is visualized in Fig. 4.1. The result for
the antiferromagnetic order parameter then is

nx = − tanh

(
ξ

xDW
(1 + 4u0)

)
ny = sech

(
ξ

xDW

√
1 + 4u0

)
.

(4.7)

The shape of the domain wall in this case does not change but the domain
wall becomes thinner and eventually approaches a step like function if the
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4. Domain Wall Thickness

magnetoelastic coupling is much larger than the anisotropy. Quantitatively
we can describe this by a rescaled domain wall width

xλDW =
xDW√
1 + 4u0

=

√
A

K2 + 4λ2/µ
. (4.8)

A plot of the domain wall width against u0 is shown in Fig. 4.1. This result
fits to our prediction of decreasing domain wall. Eq. 4.8 demonstrates how
the magnetoelastic coupling acts as an effective anisotropy because it appears
with the anisotropy in the denominator. Without calculations we can predict
that this phenomenon will also appear in the case of a 90° domain wall with
spontaneous strain and it will be quantified in the next section.
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u0=5
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0.2

0.4

0.6

0.8

1.0

u0

x
D
W

λ
/
x
D
W

Figure 4.1.: (Left) Solutions from eq. 4.6 to describe the orientation of the
Néel vector given by the angle φ against the axis ξ normal to the
domain wall. (Right) Domain wall width against the dimension-
less magnetoelastic coupling parameter u0 for a 180° domain wall
with spontaneous strains.

4.1.2. 90° Domain Wall with In-Plane Anisotropy

We repeat the procedure of the previous section for a 90° domain wall in
presence of spontaneous strains. The qualitative behaviour should be the same
as for the 180° case but some numerical factors may change. To stabilize the
domain wall we use the anisotropy function f90. In the case of zero coupling
the differential equation for φ is obtained from eq. 2.10 and reads as

A∂2
ξφ =

1

4
K2 sin(4φ). (4.9)

The boundary conditions for the 90° domain wall are φ(ξ → −∞) = 0, φ(ξ →
∞) = π/2 and ∂ξφ(ξ → ±∞) = 0 from which we obtain the first integral of
eq. 4.9
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4. Domain Wall Thickness

1

2
A(∂ξφ)2 =

1

8
K2 sin2(2φ). (4.10)

The choice of the boundary conditions for φ again allow us to take the positive
square root. The differential equation can then be solved similar as in the
previous section and we find

φ = arccot

(
exp

[
−
√
K2

A
ξ

])
(4.11)

with the same characteristic length scale xDW =
√
A/K2 as before. Both 90°

and 180° domain wall scale similar in the anisotropy and exchange constant.
The solution for the Néel vector components then takes the form

nx =
1√

1 + exp [−2ξ/xDW]

ny =
exp [−ξ/xDW]√

1 + exp [−2ξ/xDW]
.

(4.12)

In the case with nonzero magnetoelastic coupling we do expect a change of
the scaling behaviour compared to the 180° wall. In this situation we align
the domain wall along an easy direction where the spontaneous strains are
compatible. The applied spontaneous strain obeys uxx − uyy = λ/µΘ(ξ/xel)
with the same step function Θ as in section 3.2. The other components of the
strain tensor are 0. As before φ can then be determined over eq. 2.10 which
becomes

x2
DW∂

2
ξφ =

1

4
sin(4φ)− 2u0 sin(2φ)Θ(ξ). (4.13)

Note that if the axis ξ is not an easy axis of the domain wall, we still have
the same equation but the value u0 receives an additional contribution to
compensate the incompatibility of spontaneous strains. Together with the
boundary conditions we find the first integral of eq. 4.13

1

2
x2

DW(∂ξφ)2 =
1

8
sin2(2φ)− u0 (1−Θ(ξ) cos(2φ)) (4.14)

This is possible despite of the explicit dependence of ξ in equation 4.13. The
domain wall is centered at ξ = 0 due to the spontaneous strain i.e. φ(ξ = 0) =
π/4 and cos(2φ(ξ = 0)), then the lefthandside of eq. 4.14 is continuous and
the derivative with respect to ξ will lead to eq. 4.13. To solve equation 4.14

19



4. Domain Wall Thickness

we use a numerical approach. The domain wall width is set to 1 so that all
length are given in units of the domain wall width and the value u0 is varied.
The solutions for some given values of u0 are shown in Fig. 4.2 which show the
expected behaviour. To further find the scaling of the domain wall width with
respect to u0 we calculate the values φ±0 := φ(±xDW) for the solution where
λ is 0. Then we solve φ±0 = φ(x±) for x± the present coupling and have the
new domain wall width xλDW = (x+−x−)/2. The error of xλDW is given by the
step size in the of the integration algorithm to solve eq. 4.14. Therefore, we
have ∆xλDW = 0.005xDW. After repeating this for enough different coupling
strengths we can perform a fit on the data to get the general scaling behaviour.
For the fit we use the model xDW/

√
1 + αu0 which is optimized with respect

to α. The ansatz for the fit model was chosen similar to the formula in the
180° case in sec. 4.1.1 but due to the different anisotropy and strain function
the factor 4 in eq. 4.8 may be different. From he fit we receive the parameter
α = 5.60±. The data for the domain wall width against the coupling u0

together with the fit are shown in Fig. 4.2. With this result the domain wall
width with magnetoelastic coupling can be written as

xλDW =
xDW√

1 + 5.60u0
=

√
A

K2 + 5.60λ2/µ
. (4.15)
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Figure 4.2.: (Left) Solutions from eq. 4.14 to describe the orientation of the
Néel vector given by the angle φ against the axis ξ normal to
the domain wall. (Right) Data and Fit of the domain wall width
against the dimensionless magnetoelastic coupling parameter u0

for a 90° domain wall with spontaneous strains. The Fitmodel is
xDW/

√
1 + αu0 with α = 5.60±. The errors are to small to show.

As expected the behaviour of the domain wall is similar to the 180° case.
The only difference is that the 90° wall decreases ”faster” that the 180° wall.
The situation may change if we consider the influence of the relative strains
because they also depend on the explicit domain wall profile. We still expect
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4. Domain Wall Thickness

a decrease in the domain wall width with increasing coupling but the explicit
scaling may be different. This phenomenon will be studied in the following
two sections.

4.2. Full Strain Profile

4.2.1. 180° Domain Wall with Uniaxial Anisotropy

In the previous chapter we have seen that there are some additional strains at
the domain wall aside from the spontaneous strains. We include these strains
now into the system and attempt to calculate the domain wall width again.
We begin with the 180° domain wall which we align along one of its easy axes.
We can use eq. 3.7 with the angle ψ = π/4 to receive the equation

x2
DW(∂ξφ)2 = sin2 φ+ u0

(
1− 1

νe

)
sin2(2φ). (4.16)

We solve the equation similar to the one in sec. 4.1.2 with u0(1 − 1/νe) as
the scanning parameter. The resulting domain wall width plotted against the
coupling strength together with the fit is shown in Fig. 4.3. There we see that
the fitmodel, which we use for the other cases, does not work for the data of
the full strain profile and that the domain wall width scales differently. This
is not surprising if we look at the solutions of eq. 4.16. For large values of the
magnetoelastic coupling the domain wall has a decreasing slope at the center as
if there are two 90° domain walls close to each other. This decrease prevents the
domain wall to be a single step function at u0 →∞ and the width cannot scale
to 0. We therefore have to adapt the fit model to βxDW /

√
1 + αu0(1− 1/νe)+

γxDW for the parameters α, β and γ. This fit is also shown in Fig. 4.3 and
the fitting parameters are in Tab. 4.1. There we can extract the final result
for the domain wall width of a 180° domain wall with uniaxial anisotropy and
magnetoelastic coupling

xλDW

xDW
=

0.815√
1 + 0.902u0

(
1− 1

νe

) + 0.171.

α β γ

Fit 1 0.547± 0.008 1 0

Fit 2 0.902± 0.011 0.815± 0.002 0.171± 0.002

Table 4.1.: Fitting parameters of the fits in Fig. 4.3. The used model was
β/
√

1 + αu0 + γ with fixed values β = 1, γ = 0 in Fit 1.
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Figure 4.3.: (Left) Solutions from eq. 4.16 with 1/νe = 0.5 to describe the
orientation of the Néel vector given by the angle φ against the axis
ξ normal to the domain wall. (Right) Domain wall width against
the dimensionless magnetoelastic coupling parameter u0 for a 180°

domain wall with spontaneous and internal strains. The fitmodel
is βxDW /

√
1 + αu0(1− 1/νe)+γxDW with the parameters in Tab.

4.1. The errors are to small to be shown.

4.2.2. 90° Domain Wall with In-Plane Anisotropy

At last we consider the additional strains on top of spontaneous strains for a
90° domain wall. The domain wall is aligned along one of its easy axis so we
can apply eq. 3.15 to our problem to get

x2
DW(∂ξφ)2 =

1

4
sin2(2φ) + u0

(
1− 1

νe

)
sin2(2φ) =

1

4

(
1 + 4u0

(
1− 1

νe

))
sin2(2φ).

(4.17)

This equation is rather simple and can be solved directly similar to the case
without magnetoelastic coupling (cf. sec. 4.1.2 ). In terms of Néel vector the
solution reads as

nx =
1√

1 + exp

[
−2ξ/xDW

√
1 + 4u0

(
1− 1

νe

)]

ny =

exp

[
−ξ/xDW

√
1 + 4u0

(
1− 1

νe

)]
√

1 + exp

[
−2ξ/xDW

√
1 + 4u0

(
1− 1

νe

)] .
(4.18)

where scaling of the domain wall can be read out of the solution. It is plotted
in Fig. 4.4 and has the form
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xλDW =
xDW√

1 + 4u0

(
1− 1

νe

) =

√√√√ A

K2 + 4λ
2

µ

(
1− 1

νe

) .
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Figure 4.4.: (Left) Solutions from eq. 4.17 for 1/νe = 0.5 to describe the
orientation of the Néel vector given by the angle φ against the
axis ξ normal to the domain wall. (Right) Domain wall width
against the dimensionless magnetoelastic coupling parameter u0

for a 90° domain wall with spontaneous and internal strains.

Up to now we have studied the energy and shape of infinite flat domain walls
with magnetoelastic coupling. The next step is to investigate domain walls,
when they are not flat any more. The domain wall anisotropy prevents nonflat
domain walls, which are still open and infinite, when we have magnetoelastic
interactions. Therefore, we do not consider open domain walls in the next
chapter but study the effects of the magnetoelastic coupling on a closed domain
wall loop.
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5. Closed Domain Wall Loop for 180°
Domain Wall

Infinite domain walls in presence of the magnetoelastic interaction will be most
likely flat, due to the domain wall anisotropy. If the domain wall is closed, it
cannot be flat everywhere anymore for obvious reasons. Still, we expect that
the domain wall anisotropy plays a role for the closed domain wall loop and
influences it shape. In the following we investigate how the shape of a closed
domain wall loop is changing with the magnetoelastic coupling. We are now
restricted to the case of a 180° domain wall, but aside from numerical factors
the results should be similar in the 90° case.

5.1. Mathematical Description of the Domain Wall
Loop

Based on ideas of [61, 62] we describe the domain wall by a curve γ in the
xy-plane

γ : [a, b]→ R2 × {0}

with γ(a) = γ(b) for a, b ∈ R, a < b. The values a and b stay unspecified
for now so we can chose them later to fit to a respective parametrization.
In the following the variable of the curve is s and we therefore always have
s ∈ [a, b]. The curve has a tangential vector T(s) := γ ′(s)/|γ ′(s)| and a normal
vector N(s) := (ez ×γ ′(s))/|γ ′(s)|. We can write the signed curvature of γ as
κ(s) = ez · (γ ′(s) × γ ′′(s))/|γ ′(s)|3. The region around the domain wall loop
is parametrized by

Γ(s, t) = γ(s) + tN(s)

with the constraint |κ(s)t| � 1 for the variable t. The metric tensor of this
parametrization is ĝΓ(s, t) = diag(|γ ′(s)|2(1−κ(s)t)2, 1). The magnetic profile
is described by the angle φ as in the previous chapters and we approximate

cosφ = − tanh(t/xλDW)

sinφ = ±
√

1− tanh2(t/xλDW) = ± sech(t/xλDW)
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5. Closed Domain Wall Loop for 180° Domain Wall

for a 180° domain wall at t = 0 with the domain wall width xλDW from section
4.2. Although the domain wall width was only determined for a domain wall
along an easy axis, we assume a similar scaling of the width when the domain
wall loop goes along a different axis. In this approximation the energy density
W becomes a function of s and t and the energy reads as

W =

∫
W(s, t)

√
det(ĝΓ(s, t))dsdt =

∫
W(s, t)|γ ′(s)|(1− κ(s)t)dsdt. (5.1)

Integration over t yields an energy functional W [γ(s)] which we can then
minimize with respect to the curve parametrization.

5.2. Effective Energy Density

In order to integrate the righthandside of equation 5.1 over t we have to first
determine the integration interval [t−, t+] which depends on the curve param-
eter s. The boundaries for t have to be chosen such that |κ(s)t| � 1 but
we also need the whole domain wall to be covered in the integral range. For
converging terms we can therefore apply the limits t± → ±∞ as an approxi-
mation. In the rest of this section the boundaries will not be explicitly written
at the integral sign. The result from the integration of the energy density can
be interpreted as an effective energy density along the curve.
To perform the integration we split the energy density in its different parts
and start with the exchange term. For this we have

Wexch =
1

2
A(∇φ)2 =

1

2
A(∇ arccos(− tanh(

t

xλDW

)))2 =
A

2xλDW

sech2(
t

xλDW

).

(5.2)

sech2 is an even function in t and therefore we have
∫
wexchtdt = 0. The

effective energy for the exchange part can then be computed

Weff
exch =

A

2xλDW

|γ ′(s)|
∫

sech2

(
t

xλDW

)
dt

=
A

2xλDW

|γ ′(s)|
[
tanh(

t

xλDW

)

]∞
−∞

=
A

xλDW

|γ ′(s)|.

(5.3)

The next term in the energy density is the anisotropy. We choose the anisotropy
function f180 for the 180° domain wall loop. The energy density then has the
form
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5. Closed Domain Wall Loop for 180° Domain Wall

Wanis =
1

2
K2 −

1

2
K2 cos2 φ =

1

2
K2 −

1

2
K2 tanh2(

t

xλDW

) =
1

2
K2 sech2(

t

xλDW

),

(5.4)

where we added a constant for the integral to converge. The integration works
similar to the exchange energy and the result is

Weff
anis =

1

2
K2|γ ′(s)|

∫
sech2

(
t

xλDW

)
dt

= K2x
λ
DW|γ ′(s)|.

(5.5)

The last contribution to the energy is the minimized magnetoelastic (and
elastic) term. On a small local frame the domain wall loop can be viewed as
flat thus we approximate the energy term by the solution from sec. 3.1. It has
the form

Wme =
Λ

2
[cos(2(φ+ ψ))− cos(2ψ)]2

=2Λ
[
sin4 φ cos2(2ψ) + sin2 φ cos2 φ sin2(2ψ) + 2 sin3 φ cosφ sin(2ψ) cos(2ψ)

]
=2Λ

[
sech4

(
t

xλDW

)
cos2(2ψ) + sech2

(
t

xλDW

)
tanh2

(
t

xλDW

)
sin2(2ψ)

+ 2 sech3

(
t

xλDW

)
tanh

(
t

xλDW

)
sin(2ψ) cos(2ψ)

]
,

(5.6)

where we define Λ := λ2(1 − 1/νe)/µ. The angle ψ again is given by the
angle between the domain wall normal and the x-axis. The terms with sech4

and sech2 tanh2 are even functions and the one with sech3 tanh is odd in the
variable t. The nonvanishing integrals (over t) in the energy functional from
equation 5.1 therefore are

∫
sech4

(
t

xλDW

)
dt =

4

3
xλDW∫

sech2

(
t

xλDW

)
tanh2

(
v

xλDW

)
dt =

2

3
xλDW∫

v sech3

(
t

xλDW

)
tanh

(
t

xλDW

)
dt =

2

3
(xλDW)2.

The explicit calculations of the integrals are similar to the previous two terms
and are therefore not shown. With these integrals we can determine the effec-
tive energy density for the magnetoelasic term.
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5. Closed Domain Wall Loop for 180° Domain Wall

Weff
me =

4Λ

3
xλDW

[
2 cos2(2ψ) + sin2(2ψ)− 2κ(s)xλDW sin(2ψ) cos(2ψ)

]
=

4Λ

3
xλDW

[
cos4 ψ + sin4 ψ − 2κ(s)xλDW

(
cos3 ψ sinψ − sin3 ψ cosψ

)]
(5.7)

By definition of the angle ψ as the angle between the domain wall normal
and the x-axis, we can write cosψ = γ′y(s)/|γ ′(s)| and sinψ = γ′x(s)/|γ ′(s)|.
This connection is illustrated in Fig. 5.1. Together with the effective energy
densities, this allows us to rewrite the energy from eq. 5.1 as a functional of
the curve γ

W [γ(s)] =

∫ [(
A

xλDW

+K2x
λ
DW

)
|γ ′(s)| +

4Λ

3
xλDW

γ′4x (s) + γ′4y (s)

|γ ′(s)|3

+
8Λ

3
(xλDW)2

(γ′x(s)γ′′y (s)− γ′y(s)γ′′x(s))(γ′3x (s)γ′y(s)− γ′3y (s)γ′x(s))

|γ ′(s)|6

]
ds.

(5.8)

5.3. Equilibrium Shape of the Closed Domain Wall
Loop with Fixed Curve Length

A domain wall in a magnetic system costs energy due to the exchange and
anisotropy terms in the energy density. The energy W will therefore be min-
imized if γ collapses to a single point (i.e. γ ′ ≡ 0). To omit this effect we
impose that the length of the curve is fixed to a value L � xλDW . Then each
possible shape of the domain wall loop has the same exchange and anisotropy
contributions and the shape corresponding to minimal energy is purely deter-
mined by the magnetoelastic coupling. To find the equilibrium states of the
closed domain wall loop we have to minimize the energy functional W [γ(s)]
with respect to the function γ. To do this we look at each term in equation
5.8 individually.
The first term is proportional to |γ(s)| inside the integral. The integration
gives

∫
|γ(s)|ds = L

independent of the shape of the curve and the first term of equation 5.2 will be
just a constant contribution to the energy. Physically, this term corresponds
to exchange and anisotropy and therefore was expected to be a constant (i.e.
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5. Closed Domain Wall Loop for 180° Domain Wall

Figure 5.1.: Visualization of a domain wall string to show the connection be-
tween the derivative γ′ of the curve and the domain wall angle
ψ. The colors indicate the value of the x-component of the Néel
vector n. The curve γ itself runs along the domain wall i.e. the
white space between the red and blue domains.

independent of the domain wall shape) in the desired system.
The second term of equation 5.8 only includes the first derivative γ ′ of γ.
Therefore this term will be minimal for a curve that has a parametrization
with constant γ ′. We consider γ to be parametrized in arc length (|γ ′(s)| = 1)
and find the minimum of the term for γ′x ≡ ±

√
2/2 and γ′y ≡ ±

√
2/2. To make

a closed loop out of this result we can define γ piecewise over the derivative

γ ′(s) =


(
√

2/2,
√

2/2, 0) s ∈ [a, s1)

(−
√

2/2,
√

2/2, 0) s ∈ [s1, s2)

(−
√

2/2,−
√

2/2, 0) s ∈ [s2, s3)

(
√

2/2,−
√

2/2, 0) s ∈ [s3, b]

(5.9)

for a < s1 < s2 < s3 < b, l1 := s1 − a = s3 − s2 and l2 := s2 − s1 = b − s3.
This parametrization corresponds to a rectangle with axes running along the
easy domain wall axes, that already were determined in section 3.1.
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5. Closed Domain Wall Loop for 180° Domain Wall

To be consistent the last term of equation 5.8 will also be treated for a
parametrization in arc length. In this case we write γ′y(s) = ±

√
1− γ′2x (s)

the two terms in the bracket read as

γ′x(u)γ′′y (s)− γ′y(s)γ′′x(s) = − γ′′x(s)√
1− γ′2x (s)

γ′3x (s)γ′y(s)− γ′3y (s)γ′x(s) = γ′x(s)
√

1− γ′2x (s)
(
2γ′2x (s)− 1

)
and the full third term in the energy density then becomes

−
∫
γ′x(s)γ′′x(s)

(
2γ′2x (s)− 1

)
du

=−
∫
γ′x(s)

(
2γ′2x (s)− 1

)
d
(
γ′x(s)

)
=− 1

2

[
γ′2x (s)

(
γ′2x (s)− 1

)]s=b
s=a

,

for a curve parametrization in C1 (i.e. no δ-functions in the first or second
derivative). This term ends up to be 0, because it should be independent of
the starting point such that we have γ ′(a)2 = γ ′(b)2. The curve from equation
5.9 has a parametrization in C1 with

γ′x(s) = −li sign

(
cos

(
πs

2li

))
sin

(
πs

li

)
γ′y(s) = li sign

(
sin

(
πs

2li

))
sin

(
πs

li

)
with i = 1 if s ∈ [a, s1]∪ [s2, s3] and i = 2 otherwise. Therefore this curve also
gives 0 in the third term and does not add more energy compared to other
curves in this term.

In total, the curve parametrized by equation 5.9 minimizes the energy from
equation 5.8 but there are some constraints. To be consistent with the ap-
proximation t± → ±∞ in the integration we require l1, l2 � xλDW i.e. the
facing domain walls are not allowed to be to close to each other. Also the
curve needs to fulfill the conditions for its curvature that were imposed before
i.e. |t±(s)κ(s)| � 1. At the edges of the curve from equation 5.9 the curvature
diverges with the consequence t± → 0 on each edge. That again contradicts
the assumption t± → ±∞ in the integration over t. This can be treated by
formally restricting the curvature to |κ(s)| ≤ 1/nxλDW for a sufficiently large
n to keep the assumption but still with L � nxλDW. The curve will still at-
tempt to go along its easy axes as long as possible and therefore achieve its
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5. Closed Domain Wall Loop for 180° Domain Wall

maximal allowed curvature close the edges. In other words the sharp edges
are replaced by quarter circles with curvature 1/nxλDW. The change of length
of the complete curve is negligible due to L� nxλDW so we do not contradict
the length conservation by the replacement of the edges on length scales of L.
Thus, on such length scales a rectangle as in eq. 5.9 describes the shape of a
closed domain wall loop, when its length is fixed.

5.4. Equilibrium Shape of the Closed Domain Wall
Loop with Fixed Area

Another possibility to prevent the collapse of the curve to one point is fixing
the area, that is enclosed in the curve. This will show how the competition
between magnetoelastic coupling against anisotropy and exchange acts out in
the loop. Therefore in this section the area is fixed to a value V � (xλDW)2

and the length of the curve is allowed to vary. As the first term of the energy
in equation 5.8 is proportional to the curve length, it will be minimized for a
curve with the shortest length for a given area. Thus, we find the minimum
of the first term for a circle with radius r :=

√
V/π. The second term of

the energy will still be minimal for γ ′ ∝ (±1,±1) on a local level but also is
attempting to minimize its area. We therefore will receive a square shape at
the minimum of this term. The third term of the energy expression gives no
contribution into the energy for closed loops as before. The equilibrium shape
of the domain wall loop is therefore determined by the first two terms and
has the form of something in between a circle and a square depending on the
strength of the magnetoelastic coupling. We can approximate such shapes by
a superellipse [63] i.e. by a shape with |γx/a|n + |γy/b|n = 1. For a = b the
superellipse can be parametized with

γse
x (s) = a sign(cos(s)) | cos(s)|2/n

γse
y (s) = a sign(sin(s)) | sin(s)|2/n

(5.10)

for s ∈ [0, 2π] and n ≥ 2 in our case. For n→∞ the curve will be a square with
the sides parallel to the x- and y-axis. To make the approximation feasible, we
have to additionally rotate the superellipse by 45° and use the parametrization

γx(s) = (γse
x (s) + γse

y (s))/
√

2

γy(s) = (γse
x (s)− γse

y (s))/
√

2
(5.11)

Each quarter of the superellipse contributes equally to the energy, so we restrict
s to the interval [0, π/2]. On this interval the sine and cosine are both positive
and the parametrization simplifies to its final form
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5. Closed Domain Wall Loop for 180° Domain Wall

γx(s) = a(cos2/n(s) + sin2/n(s))/
√

2

γy(s) = a(cos2/n(s)− sin2/n(s))/
√

2
(5.12)

The integral in W cannot be solved analytically for all n, so we attempt a
numerical approach. The area of a superellipse is V =

√
π41−1/na2Γ(1 +

1/n)/Γ(1/2 + 1/n) [64] where Γ marks the Gamma function [65]. Conserving
this area gives a relation between the free parameters of our parametrization
namely

a =
2−1+1/n

√
V Γ(1/2 + 1/n)

π1/4
√

Γ(1 + 1/n)
. (5.13)

For fixed values A, K2 and Λ we perform the integrals for multiple values of
n numerically and determine which value minimizes the energy of the closed
domain wall loop. We set xDW = 1 and V = 1 and repeat the calculations for
different values of the ratio Λ/K2(= uν). The error is dominated the step size
in n compared to the error of the numerical integration. We therefore set the
error for the n of minimal energy to ∆n = 0.01. The values n which correspond
to minimal energy for different values of the magnetoelastic coupling are shown
in Fig. 5.2. There we see the expected behaviour, zero coupling corresponds
to n = 2 and the curve has the shape of a circle. For infinite coupling n
diverges and the curve approaches a square. To predict n (and a) for values
Λ/K2 beyond 10 the data was fitted. The used fit model is α exp(β(Λ/K2)) +
γ(Λ/K2) + δ with the parameters listed in Tab. 5.1. For applications it would
be more convenient to always approximate the shape not by a super ellipse
but by the square shape which we have at Λ → ∞. To see when this is
possible we compare the ratio of the energies of a square and the energy of
the superellipse for the same value of Λ/K2. The ratio is visualized in Fig.
5.3. The superellipse shape has 95% of the square energy at the value of
Λ/K2 = 0.845 ± 0.001 and 99% of the square energy at Λ/K2 = 3.75 ± 0.01.
Depending on the accuracy goal we can therefore approximate the shape of a
closed domain wall loop with fixed area by a square with sides along the domain
wall easy axes for values below 4 (or even 1) of the ratio of magnetoelastic
coupling to anisotropy.

α β γ δ

0.477± 0.012 0.392± 0.002 1.53± 0.01 1.57± 0.01

Table 5.1.: Fitting parameters of the fit in Fig. 5.2 with the model
α exp(β(Λ/K2)) + γ(Λ/K2) + δ.
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Figure 5.2.: Data and fit of the parameter n of the superellipse corresponding
to minimal energy with respect to the magnetoelastic coupling.
The used fitmodel is α exp(β(Λ/K2)) + γ(Λ/K2) + δ with the pa-
rameters from Tab. 5.1 The error bars to the data are too small
to be represented in the data.

0 2 4 6 8 10

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Λ / K2

E
ne
rg
y
ra
ti
o

Figure 5.3.: Energy ratio of a closed domain wall loop with shape of a square
(sides along domain wall easy axes) over a superellipse as in eq.
5.12. The parameters n and a correspond to their respective en-
ergy minima for a given value Λ/K2. They can be determined
over the fit in Tab. 5.1 and eq. 5.13
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5. Closed Domain Wall Loop for 180° Domain Wall

This concludes the study of static domain walls in this work. We know about
the energy and shape of flat domain walls and how a closed domain wall loop
is shaped under magnetoelastic interactions. In the next step we want to
investigate dynamical effects of magnetoelastic domain walls. We take a step
back to flat domain walls and determine how they react to disturbances.
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6. Pinning of a 90° Domain Wall with
Frozen Spontaneous Strains

In order to study dynamical phenomena on magnetoelastic domain walls, we
consider a model in which the acoustic modes of the lattice have significantly
lower frequencies than the AFM magnetic modes. Thus, on the time scales
of the AFM we can assume that the lattice and therefore strains are ”frozen”
i.e. do not depend on time. This assumption is reasonable because the acous-
tic modes in crystals often are in the GHz regime (cf. e.g. [66–68]), which
is significantly lower than the THz AFM dynamics. In such a situation the
spontaneous strains corresponding to a 90° domain wall (cf. eq. 3.11) act as
an effective inhomogeneous uniaxial anisotropy. A shift of the domain wall
or a change in its profile therefore increases the energy due to the effective
anisotropy. This effect is visualized in Fig. 6.1. Thus, the domain wall prefers
to stay at the position corresponding to the initialized spontaneous strains.
This gives rise to the idea that 90° domain walls can be pinned by their spon-
taneous strains. In the following sections we demonstrate this pinning and
further determine its strength.

Figure 6.1.: Visualization of shifting a domain wall with frozen strains. The
background color indicates the spontaneous strain profile, while
different color corresponds to opposite sign. The arrows indicate
the orientation of the Néel vector. On the left the equilibrium of
a 90° domain wall normal to the axis ξ is shown. On the right the
domain wall is shifted. Thus, in the marked rectangle the strains
do not minimize the energy of the corresponding magnetic profile..
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6.1. Localized Modes of Excitations of the Domain Wall

6.1.1. Derivation of the Eigenvalue Equation of a Domain Wall
Excitation

To describe the dynamics of our magnetoelastic system we have to consider
the AFM Lagrangian density

L =
1

2
τ̃2 [ṅ + n× h]2 −W, (6.1)

[69] for τ̃ ∈ R, where W is the energy density consisting of exchange,
anisotropy and magnetoelastic contributions (cf. chapter 2) and h is the ap-
plied external field. In the field free case the kinetic term reduces to ṅ2 = φ̇2

and the equation of motion is found by the Euler Lagrange equation. With
the anisotropy function f90 we receive

τ2φ̈ = x2
DW∇2φ− 1

4
sin(4φ)− 2

λ

K2
(−(uxx − uyy) sin(2φ) + 2uxy cos(2φ)) .

(6.2)

for τ := τ̃ /
√
K2. We impose the frozen strain profile corresponding to a 90°

domain wall and set uxx − uyy = u0µK2/λΘ(ξ) and uxy = 0 such that u0

describes the dimensionless strength of the magnetoelastic coupling. Θ acts
as a sign function (cf. chapter 3) and ξ is a space variable corresponding
to an axis in the xy-plane. φ will then only vary along the ξ-axis and the
derivative ∇2 can be replaced by ∂2

ξ . In the static case the solution for φ will
describe a 90° domain wall as we have seen in Fig. 4.2. Let φ0 be that static
solution of eq. 6.2 and φ1 a small deviation (|φ1| � |φ0|) such that φ0 + φ1

still solves eq. 6.2. Let us further assume that φ1 is harmonic in time i.e.
φ1(ξ, t) = ϕ(ξ) exp(iωt). In this case we can expand eq. 6.2 in ϕ about φ0 up
to first order to receive a linear equation for ϕ

τ2ω2ϕ = −x2
DW∂

2
ξϕ+ [cos(4φ0) + 4u0Θ(ξ) cos(2φ0)]ϕ. (6.3)

We do not have a zero order term in the upper equation because it corresponds
to the static eq. 6.2 with the field φ0 and is therefore 0 on both sides. Due to
the domain wall shape (cf. 4.2) we approximate cos(2φ0) = − tanh(ξ/xλDW)
where xλDW is taken from sec. 4.1.2. Together with the new variable X :=
ξ/xDW eq. 6.3 changes to

τ2ω2ϕ = −∂2
Xϕ+ [1− 2 sech (αλX )− 4u0Θ(ξ) tanh (αλX )]ϕ. (6.4)
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with αλ := xDW/x
λ
DW =

√
1 + 5.60u0. The term in the square brackets will

be referred to as the potential V90 and is shown in Fig. 6.2 for some values
of u0. We further define H90 := ∂2

X + V90. The potential is symmetric with
a minimum at 0 and no maxima. It converges to 1 + 4u0 at X → ±∞.
Thus, eq. 6.4 has free solutions (if we interpret eq. 6.4 as a Schrödinger
equation) for τ2ω2 > 1 + 4u. If there are also bound solutions (solutions with
τ2ω2 < 1 + 4u0) with nonzero eigenvalue we can conclude that the domain
wall is pinned. In this case a small excitation (e.g. a shift) of the domain wall
does not provide freely propagating magnons but an oscillation on top of the
equilibrium solution φ0 localized at the domain wall center and the domain
wall stays at the inhomogeneity of the strain distribution. Thus, to prove that
domain walls can be pinned by strains, we attempt to find bound states of
H90 with nonzero eigenvalues. Before we begin with this, let us consider the
case u0 = 0. In this situation eq. 6.4 is known [70] and has one bound state
ϕ ∝ sech(X ) with τ2ω2 = 0. We therefore expect to also find one bound state
for nonzero u0 and that the eigenvalue as a function τ2ω2(u0) converges to 0
for u0 → 0.

u0=0
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u0=2

u0=5
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Figure 6.2.: Potential V90(X ) for different values of u0.

6.1.2. Ground State Eigenvalue with the WKB Approximation

Eq. 6.4 is similar to the Schrödinger equation in one dimension [71]. This
allows us to apply methods that are usually used in quantum mechanics to find
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the energy eigenvalues. We receive a first guess of the ground state eigenvalue
below 1+4u0 by applying the WKB approximation [72]. In this approximation,
the eigenvalues En for a Hamiltonian with potential V (X ) can be obtained by
the relation

∫ x+turn

x−turn

dX
√
En − V (X ) = π

(
n+

1

2

)
(6.5)

where V (x±turn) = En. x−turn < x+
turn are the turning points of the potential

and n ∈ N0 enumerates the discrete eigenvalues such that En < En+1 for all
possible n. In the case of V ≡ V90 the turning points for the ground state
E0 = τ2ω2 if τ2ω2 < 1 + 4u0 are

x±turn = ± 1

2αλ
ln

[
1 + τ2ω2 + 2

√
τ2ω2 + 4u2

0

1− τ2ω2 + 4u0

]
.

The ground state energy can then be determined by solving eq. 6.5 for τ2ω2.
We do this numerically by scanning through different values τ2ω2 in a range
between 0 and 1 + 4u0. If the integral of eq. 6.5 corresponds to 0 within the
error for one value of τ2ω2 we take this value as the ground state energy which
then is a bound state. The step size of the scan gives the error of the estimate
for τ2ω2, in our case we have ∆τ2ω2 = 0.01. The results of that procedure are
shown in Fig. 6.3 together with a linear Fit on the data. The parameters of the
fit are listed in 6.1. From the parameters we receive a ground state eigenvalue
for zero coupling of 0.480±0.009 which significantly differs form the real value
0. This is due to the fact, that the WKB approximation is inaccurate for low
eigenvalues and gets better if the value increases because. The reason is that in
terms of quantum mechanics a large eigenvalue corresponds to large energy and
small de Broglie wave length, which is a requirement for the WKB [72]. Thus,
for large u0 the ratio to the real eigenvalue should shrink as the eigenvalue
increases and the approximation is more accurate. We therefore expect a
similar i.e. a linear behaviour of the real ground eigenvalue with respect to
u0 in the large u0 limit. This demonstrates the existence of a bound state in
the eigensystem of eq. 6.5 and that the frequency ω scales with

√
u0. The

domain wall is therefore pinned and the strength of the pinning increases with
u0 because of the increasing frequency. The procedure was repeated for the
next order eigenvalue n = 1 but there were no real turning points in the range
τ2ω2 ∈ [0, 1 + 4u0), which implies that the n = 0 bound state is the only one.
For a more accurate quantitative analysis of the lowest order state we have to
move on to other methods which will be applied in the following two sections.
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Figure 6.3.: Data and linear fit of the lowest order eigenvalue of eq. 6.4 deter-
mined over the WKB approximation. The parameters of the fit
are given in Tab. 6.1. The error bars are to small to be shown in
the plot.

a b

3.84± 0.01 0.480± 0.009

Table 6.1.: Parameters of the fit in Fig. 6.3 to the model au0 + b.

6.1.3. Ground State Eigenvalue with the Variational Principle

For a Schrödinger equation (−∂2
X + V (X ))ϕ = Eϕ with the ground state

energy E0 any normalized wave function ϕ fulfils the relation

〈ϕ| (∂2
X + V (X )) |ϕ〉 :=

∫
R
dXϕ∗(∂2

X + V (X ))ϕ ≥ E0 (6.6)

[71]. If the exact ground state is not known but we can approximate its wave
function, this relation can be used to find an upper bound of the ground state
energy close to the real value. In our case we can use this to find the bound
state eigenvalue from eq. 6.4 by approximating the wave function with a free
parameter. Then we can minimize the integral of eq. 6.7 with respect to the
parameter to have the upper bound of the ground state. This procedure is (as
the WKB approximation) one of the fundamental approximation methods [71].
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Since the ground state for zero coupling is proportional to sech(X ), we use
ϕβ(X ) =

√
β/2 sech(βX ) as an approximation for the real ground state. Then,

for given u0, we scan through different values of β > 1 and determine which
value minimizes 〈ϕβ|H90 |ϕβ〉. The results for u0 from 0 to 10 is shown in Fig.
6.4 with a linear fit whose fitting parameters are in Tab. 6.2. The fitfunction
is always below 1 + 4u0 which shows again the existence of a bound state and
the linear behaviour of the data shows the square root scaling between ω and
u0. The results for the eigenvalue are also below the ones from the WKB
approximation so the best estimate for the oscillation frequency of the ground
state for now is

ω =

√
0.147 + 3.26u0

τ
(6.7)

with an error estimate of
√

0.147/τ at each value of u0. This is due to the
analytical solution from which we know that u0 = 0 has ω = 0.

◆◆
◆◆◆

◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆◆

0 2 4 6 8 10
0

10

20

30

40

u0

τ
2 ω
2

Data

Fit

Figure 6.4.: Data and linear fit of the lowest order eigenvalue of eq. 6.4 de-
termined over the variational principle. The parameters of the fit
are given in Tab. 6.2. The error bars are to small to be shown in
the plot.

Although the approximation ϕ ∼ sech makes sense in regarding the solution
without coupling, we have no evidence that the approximation is valid. To
justify the result a bit more, we repeat the procedure with other test functions
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6. Pinning of a 90° Domain Wall with Frozen Spontaneous Strains

a b

3.26± 0.01 0.147± 0.006

Table 6.2.: Parameters of the fit in Fig. 6.4 to the model au0 + b.

ϕ. Considering the shape of the potential, we know that the ground state wave
function is symmetric around X = 0 and decreases continuously from the
center. Therefore, the other test functions have a Gaussian and a Lorentzian
shape. The results of these functions are presented in the appendix D.1 and
provide similar but slightly larger eigenvalues than the hyperbolic approach.
Therefore, we keep the relation from eq. 6.7 as our best estimate of the ground
state but still do not know how far the ground state energy will be below this
estimate. To answer this and to verify the variational method we compute the
ground state eigenvalue again, using the software package Mathematica in the
next section.

6.1.4. Ground State Eigenvalue with the Software Mathematica

The software Mathematica has an implemented function ”NDEigensystem”
(since version 10.2) to determine the eigenfunction and -value of a linear op-
erator over a given region. In the context of a Hamilton operator the term
region corresponds to infinite potential outside of the input region and the
potential of the input Hamiltonian inside. In our real system there is are no
borders with infinite potential beyond them. It would therefore be intuitive to
choose a region as large as possible. However, this approach will not provide
correct results because in the numerical computation each segment along X
is weighted the same. If the potential is approximately constant for a large
part of the input region, deviations from that constant in the potential have
a small weight compared to the large approximately constant part. Thus, in
our case we receive τ2ω2 ≈ 1 + 4u0 for too large ranges, which contradicts the
previous results. On the other hand, the region cannot be chosen too small,
otherwise the potential in Mathematica and the real potential differ too much
and we compute the wrong eigenvalues. In order to find an appropriate range
in positive and negative direction, which defines the region, we have to com-
pare the eigenvalues for different ranges. For this, we first look at the solution
of the lowest order eigenvalue for a range of 10 xλDW. In that and all following
calculations the version 12.2 of Mathematica [73] has been used. The results
are shown in Fig. 6.5 together with a fit and the fit parameters are in Tab.
6.3. The linear scaling coincides with the solutions from the previous sections.
To quantify the scaling we now compute and fit the eigenvalue for different
ranges and compare the parameters a and b of a linear fit of the model au0 +b.
These results are visualized in Fig. 6.5. We see a plateau for ranges in between
of 10 and 40 xλDW. In this territory, we expect to receive the best estimate for
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the lowest order eigenvalue of the real potential V90. We perform a weighted
average over all such values and receive receive

a = 3.23± 0.01

b = 0.159± 0.005

for τ2ω2 = au0 + b is the best estimate of the lowest order eigenvalue for
H90 with Mathematica. The value is larger than the one from the variational
principle for all u0 > 0. Thus, the variational principle provides the best
approximation for the real ground state eigenvalue for H90 because it has the
lowest of all determined eigenvalues, which still has to be greater than the
real value. All methods have shown that the domain wall is pinned by frozen
spontaneous strains and the frequency of the excitation increases with the
coupling over ω ∼ √u0. To further quantify the strength of the pinning we
will determine the force, that is required to overcome the pinning with respect
to u0 in the following section.
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Figure 6.5.: Data and linear fit of the lowest order eigenvalue of H90 computed

with Mathematica in a range of 10 xλDW. The fitting parameters
are shown in Tab. 6.3.
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a b

3.23± 0.01 0.153± 0.007

Table 6.3.: Fitting parameters of the fit in Fig. 6.5 for the model au0 + b.
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Figure 6.6.: Fitting parameters of the eigenvalues of H90 with respect to u0.
The eigenvalues were determined with Mathematica for different
ranges in the input regions and the fit model was au0 + b. The
vertical lines mark the borders of the plateau.

6.2. Pinning Force

We have observed that the 90° domain wall is pinned by the spontaneous
stains. Now we want to quantify the strength of that pinning. To do this we
compute the pinning potential

Upin(X) =

∫
R
dX W(X , φ(X −X)) =

∫
R
dX Wme(X , φ(X −X)) + k. (6.8)

This potential corresponds to the energy that increase by shifting the domain
wall by the value X, when the strains are frozen. Since there is only an
explicit space dependence in the magnetoelastic term from the spontaneous
strain, the other energy contributions will add up to a constant k ∈ R in
the pinning potential. Thus, for simplicity we shift the potential Upin(X) →
Upin(X)− k. In the case of a 90° domain wall with spontaneous strains under
the approximation cos(2φ) = − tanh(αλX ) the potential has the form

Upin(X) = 4u0

∫
R
dX (1−Θ(X ) tanh(αλ(X −X))) =

4u0K2

αλ
ln cosh(2αλX),

(6.9)

where a constant 4u0 was added to the energy density for the integral to
converge. The potential is shown in Fig. 6.7. From the pinning poten-
tial we can compute the force per unit area in the domain wall plane, that
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6. Pinning of a 90° Domain Wall with Frozen Spontaneous Strains

acts onto the domain wall after being shifted by X in real space coordi-
nates over F := −U ′pin(X) = −8u0K2 tanh(2αλX) in units of the reciprocal
rescaled domain wall width. Alternatively we can describe the shift in real
space coordinates Ξ := xλDWX to receive the force F := −dUpin(Ξ/xλDW) =
−8u0K2 tanh(2αλX)/xλDW. This force is also plotted in Fig. 6.7. F in
monotonous and converges against ∓8u0K2/x

λ
DW at ±∞. This shows, that

the domain wall always feels a repulsive force when shifted away from the cen-
ter which always increases with distance. When we manually want to remove
the domain wall from the pinning center we need to apply a force larger or
equal to 8u0K2/x

λ
DW in its absolute. Since this value defines how strong the

pinning of the domain wall is due to the spontaneous strain we call this the
pinning force Fpin of our domain wall system. The pinning force increases with
the magnetoelastic coupling Fpin ∼ u0 so we have to apply stronger forces to
overcome the pinning when the strength of coupling increases.
We have shown that 90° domain walls are pinned by spontaneous strains on
short time scales, where the strains are approximately frozen. The strength
of such pinning scales with the strength of the coupling between the strains
and the Néel vector. Although we only considered 90° domain walls, it is rea-
sonable to argue that we observe similar effects for all kinds of domain walls,
where the spontaneous strain is different for both domains. This is due to the
role of strains as an effective inhomogeneous anisotropy such that the domains
have minimal energy when the wall stays at the inhomogeneity of the strain
profile. When the spontaneous strain is constant i.e. for 180° domain walls
this argument does not hold anymore and a potential pinning needs to have a
different origin. We therefore study this case explicitly in the next chapter.
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Figure 6.7.: Potential (left) and force (right) which correspond to a shift of a
90° domain wall with frozen spontaneous strains away from equi-
librium. The potential is linear for large values of X and the
slope increases with the coupling. Thus, the retracting force to
the minimum of the potential converges to a constant which in-
creases with the strength of magnetoelastic coupling.
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7. Pinning of a 180° Domain Wall
with Frozen Relative Strains

In 180° domain walls the spontaneous strain is a constant and cannot pin a
domain wall. Nevertheless, a domain wall induces relative strains localized
at the domain wall. These strains minimize the energy for a given domain
wall and thus a shift or other excitation of the domain wall profile with frozen
strains still lead to an increase of the energy. This motivates the idea that
180° magnetoelastic domain walls with frozen relative strains are also pinned
as the 90° walls with spontaneous strains. Thus, we study pinning effects for
180° domain walls similar to the previous chapter.

7.1. Localized Modes of Excitations of the Domain Wall

7.1.1. Derivation of the Eigenvalue Equation of a Domain Wall
Excitation

To receive the eigenvalue equation for excitations in a 180° domain wall we
follow the same steps as for the 90° domain wall. We begin with the Euler
Lagrange equation which for the 180° case with the anisotropy function f180

takes the form

τ2φ̈ = x2
DW∇2φ− 1

2
sin(2φ)− 2

λ

K2
(−(uxx − uyy) sin(2φ) + 2uxy cos(2φ)) .

(7.1)

We assume that φ0 is the static solution of eq. 6.2 for a 180° domain wall along
its easy axis ξ := (x+ y)/

√
2 as in sec. 3.1 with the corresponding strains

uxx − uyy = −u0K2

λ
cos(2φ0)

2uxy = −u0K2

λνe
sin(2φ0)

(cf. eq. 3.3 and 3.6). Again we consider a small deviation φ1 such that φ0 +φ1

solves eq. 7.1 and with |φ1| � |φ0|. We assume φ1 only varies along ξ and
has the time dependence φ1(ξ, t) = ϕ(ξ) exp(iωt). The linearized equation for
ϕ then takes the form
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τ2ω2ϕ =− x2
DW∂

2
ξϕ+ [cos(2φ0)− 4u0(uxx − uyy) cos(2φ0)− 4u0(2uxy) sin(2φ0)]ϕ

=− x2
DW∂

2
ξϕ+

[
cos(2φ0) + 4u0 cos2(2φ0) +

4u0

νe
sin2(2φ0)

]
ϕ

(7.2)

We approximate cos(φ0) = − tanh(ξ/xλDW) similar to chapter 5 with xλDW from
sec. 4.2.1. With the definitions X := ξ/xDW and αλ = xDW/x

λ
DW we receive

the equation

τ2ω2ϕ = −∂2
Xϕ+

[
1− 2 sech2(αλX ) + 4u0(1− 2 sech(αλX ))2

+
16u0

νe
tanh2(αλX ) sech2(αλX )

]
ϕ.

(7.3)

We call the term in the square brackets the potential V180 and define H180 :=
−∂2
X +V180 as we did in the situation of the 90° domain wall. The potential is

shown in Fig. 7.1. It has the same properties for X → ∞ as V90 and is equal
to V90 for u0 = 0, thus it has free states for eigenvalues above 1 + 4u0 and can
have bound states with eigenvalues below. We attempt to compute the bound
states with similar methods as in the previous chapter.
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Figure 7.1.: Potential V180(X ) for different values of u0 and 1/νe = 0.5.
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7.1.2. Ground State Eigenvalue with the WKB Approximation

We begin with the WKB approximation to find the number of bound states
and to receive a first estimate of the eigenvalue with respect to u0. Similar
to sec. 6.1.2 we compute the lefthandside of eq. 6.5 and solve it for n = 0 to
receive the ground state by scanning through multiple values for E0. In some
cases there are more than two turning points which have to be computed
numerically (Cf. Fig. 7.1). Then, the lefthandside of eq. 6.5 is divided into
sums of integrals between neighbouring turning points such that E0 > V180(X )
along all integration intervals. The results for the ground state eigenvalue from
these computations for 1/νe = 0.5 are shown in Fig. 7.2. For sufficiently large
u0 the data approaches a linear function. We perform a linear fit on the data
to receive the large u0 scaling of the ground state eigenvalue of H180, where
the WKB approximation is the most accurate [72]. The fit is shown in fig. 7.2
and the fitting parameters are in Tab. 7.1. To generalize the result, we repeat
the calculations for different values of νe. The eigenvalues with respect to the
magenetoelastic coupling as well as their linear fits are shown in the appendix
D.2. The fitting parameters a and b are fitted themselves as a function of
1/νe to find the corresponding dependency. This is shown in Fig. 7.3 with
fitting parameters is Tab. 7.2. We finally obtain the result for the lowest order
eigenvalue of eq. 7.3 with the WKB approximation in the regime of large u0

τ2ω2 = (1.60
√

1 + 4.08/νe − 1.07)u0 + 0.337/νe + 1.13. (7.4)

Since the eigenvalue is nonzero for u0 6= 0, we can conclude that the domain
wall is pinned by the relative strains of a 180° domain wall. Further we see that
the eigenfrequency is smaller than in the 90° case from the previous chapter.
Thus, the pinning by relative strains is weaker than by spontaneous strains.
The strength of the pinning will be further investigated in sec. 7.2. For the
next order eigenvalue n = 1 eq. 6.5 has no solutions for E1 < 1 + 4u0 (and no
turning points above). Therefore, as for the 90° domain wall there is only one
bound state, for which we can use the variational principle to find an upper
limit of the eigenvalue. We use this method in the next section in order to
find the scaling in the regime of low u0 and hence low eigenvalue, where the
WKB approximation is inaccurate.

a b

1.72± 0.01 1.30± 0.03

Table 7.1.: Parameters of the fit in Fig. 7.2 to the model au0 + b.
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Figure 7.2.: Data and linear fit of the lowest order eigenvalue of eq. 7.3 with
1/νe = 0.5 determined over the WKB approximation. The pa-
rameters of the fit are given in Tab. 7.1. The error bars are to
small to be shown in the plot.
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Figure 7.3.: Data and fits of the fitting parameter form the linear fits of Fig.
7.2 and D.2 with respect to 1/νe. The parameter a (left) is the
slope of the fits and the parameter b (right) is the y-intercept.
The parameters of the shown fits are in Tab. 7.2.
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α β γ

Param. a 1.60± 0.08 4.08± 0.28 −1.07± 0.08

Param. b 0.337± 0.026 1.13± 0.01

Table 7.2.: Parameters of the fits in Fig. 7.3. The fit model was α
√

1 + β/νe+
γ for the parameter a and β/νe + γ for the parameter b.

7.1.3. Ground State Eigenvalue with the Variational Principle

We now want to find an estimate for the ground state eigenvalue when u0 is
low and therefore repeat the steps from sec. 6.1.3 for H180 i.e. we compute
〈ϕβ|H180 |ϕβ〉 for an approximate ϕβ for the ground state and minimize the
expression with respect to β. As an approximate for the ground state we
choose ϕβ(X ) =

√
β/2 sech(βX ) because for u0 = 0 ϕ1 is the exact solution

for the ground state. Therefore, the ground state wave function should not
differ significantly from the test function as long as u0 is small enough. When
u0 increases the approximation is not valid anymore, due to the different shape
of the potential (Cf. Fig. 7.1). The result of this calculation for 1/νe = 0.5
is shown in Fig. 7.4 together with a linear fit. The fitting parameters are in
Tab. 7.3. To have the solution for arbitrary νe we repeat the calculations for
different values of νe. The fitting parameters of the linear fits for the different
νe are then fitted as well with respect to 1/νe. This is shown in Fig. 7.5 with
the parameters of the new fits in Tab. 7.4. These results provide an upper
bound of the ground state eigenvalue of

τ2ω2 = (5.74
√

1 + 0.704/νe − 3.97)u0 + 0.204/νe + 0.194. (7.5)

In the regime of low u0 this upper bound can also be used as an estimate of
the ground state eigenvalue as mentioned above. We again also attempt to
determine the eigenvalues over Mathematica to quantify again the scaling f
the eigenvalues for large u0.
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Figure 7.4.: Data and linear fit of the lowest order eigenvalue of eq. 7.3 with
1/νe = 0.5 determined over the variational principle. The param-
eters of the fit are given in Tab. 7.3. The error bars are to small
to be shown in the plot.
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Figure 7.5.: Data and fits of the fitting parameter form the linear fits of Fig.
7.4 and D.3 with respect to 1/νe. The parameter a (left) is the
slope of the fits and the parameter b (right) is the y-intercept.
The parameters of the shown fits are in Tab. 7.4.
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a b

2.70± 0.01 0.300± 0.013

Table 7.3.: Parameters of the fit in Fig. 7.4 to the model au0 + b.

α β γ

Param. a 5.74± 0.21 0.704± 0.028 −3.97± 0.21

Param. b 0.204± 0.004 0.194± 0.001

Table 7.4.: Parameters of the fits in Fig. 7.5. The fit model was α
√

1 + β/νe+
γ for the parameter a and β/νe + γ for the parameter b.

7.1.4. Ground State Eigenvalue with the Software Mathematica

The variational principle provides results close to the real eigenvalues, when
the test function approximates the real ground state sufficiently well. This
is the case for small u0, which is why the quantitative scaling in the low u0

regime can be taken from eq. 7.5. For large u0 we want to reduce the error,
which comes from the WKB approximation. Therefore, determine the ground
state eigenvalue of eq. 7.3 again over the function ”NDEigensystem” from
Mathematica (cf. sec. 6.1.4). First we take a look at a solution for the
ground state eigenvalue in Fig. 7.6 together with a fit. We see a similar linear
behaviour for large u0 as in sec. 7.1.2. For the best results we have to again
determine an optimal range which we put in to the function as the region. For
this the solutions for different ranges were fitted with the linear model au0 + b
and the results of the fitting parameter with respect to the range for 1/νe = 0.5
is shown in Fig. 7.7. For low ranges the parameters oscillate significantly with
respect to the ranges. Within the segment of ranges in between 80 and 120
xλDW, the parameter a is almost constant and is similar to the results from the
WKB approximation. Thus we choose the mean (weighted by the errors) of
all the fitting parameter solutions in this segment as an estimate of the real
value. Similar to the previous sections we repeat the calculations for different
values of νe to find a general expression for the ground state eigenvalue. The
estimates of the parameters a and b with respect to 1/νe are visualized in Fig.
7.8. This data was fitted similar as in the previous two sections and the fitting
parameters are in Tab. 7.6. We receive as an estimate for the eigenvalue for
large u0

τ2ω2 = (2.47
√

1 + 1.72/νe − 2.03)u0 + 0.0127/νe + 0.868. (7.6)

We have shown that 180° domain walls are pinned by relative strains localized
at the domain wall. Similar to the situation of 90° domain wall pinned by
spontaneous strains, the frequency of the lowest magnon mode scales with the
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7. Pinning of a 180° Domain Wall with Frozen Relative Strains

magnetoelastic coupling over ω ∼ √u0. As we did for the 90° domain wall we
will also compute the force which is necessary to overcome the pinning of a
180° wall in the following section.
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Figure 7.6.: Data and linear fit of the lowest order eigenvalue ofH180 computed

with Mathematica in a range of 10 xλDW. The fitting parameters
are shown in Tab. 7.5.

a b

1.97± 0.01 1.22± 0.04

Table 7.5.: Fitting parameters of the fit in Fig. 7.6 for the model au0 + b.

α β γ

2.47± 0.94 1.72± 0.61 −2.03± 1.01

−0.0127± 0.0130 0.868± 0.004

Table 7.6.: Fitting parameters of the fit in Fig. 7.6. The fit model was

α
√

1 + β/νe + γ for the parameter a and β/νe + γ for the pa-
rameter b.
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Figure 7.7.: Fitting parameters of the eigenvalues of H180 with respect to u0.
The eigenvalues were determined with Mathematica for different
ranges in the input regions and the fit model was au0 + b.
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Figure 7.8.: Fitting parameters of the eigenvalues of H180 with respect to u0.
The eigenvalues were determined with Mathematica for different
ranges in the input regions and the fit model was au0 + b.

7.2. Pinning Force

Similar to a 90° domain wall we can pin a 180° domain wall by frozen strains.
Since the relative and not spontaneous strains are responsible for the pinning
in the 180° case, the strength of the pinning is expected to be lower than for
a 90° domain wall. This is demonstrated by the lower eigenfrequencies, which
were computed in the previous sections and we can further show this effect by
computing the pinning force of the 180° wall. For this we calculate the pinning
potential within the approximation cosφ = − tanh(αλX )
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7. Pinning of a 180° Domain Wall with Frozen Relative Strains

Upin(X) =

∫
R
dX W(φ(X −X), û(X ))

=4u0

∫
R

[
−1 + (1− 2 sech(αλX )(1− 2 sech(αλ(X −X))

+
4

νe
tanh(αλX ) sech(αλX ) tanh(αλ(X −X)) sech(αλ(X −X))

]
=

8u

αλ

[
2π + (16 + 8X(1− νe)

exp(X)(1 + exp(2X)))

νe(−1 + exp(2X))2

+ 16X(3 + νe)
exp(3X)

νe(−1 + exp(2X))3

]
(7.7)

and the repulsive force F (X) = −U ′pin(X) in units of 1/xλDW. Again a constant
was added into the energy density for convergence. Potential and force are
plotted in Fig. 7.9 for 1/νe = 0.5. We see that the repulsive force decreases
beyond a certain X, which happens because the strains, which are responsible
for the pinning, are only located at the domain wall. The pinning force Fpin

corresponds to the maximum of F similar to sec. 6.2 and is computed for
multiple values of νe. The dependency from Fpin of 1/νe is plotted and fitted
in Fig. 7.10 with fitting parameters in Tab. 7.7. From this we can determine
a general formula of the pinning force

Fpin = 4u0(0.213(1 + 1.75/νe)
2 + 0.633)/xλDW. (7.8)

In the regime 1/νe ∈ [0, 0.5] (i.e. ν ∈ [0, 0.5] which is motivated by [58]) the
function in the brackets is always smaller than 1. The pinning force of a 90°

domain wall therefore is more than two times larger than for a 180° domain
wall. This fits to the expectation that the strains, localized at the domain wall
induce a weaker pinning than the global spontaneous strains. The pinning
by spontaneous and relative strains demonstrates that a strong magnetoelas-
tic coupling stabilizes an AFM multi-domain system against electromagnetic
noise. Thus, AFMs with strong magnetoelastic coupling may have a higher
stability as memories against disturbing signals and require further investi-
gation, which goes over the scope of this work. In conclusion we have seen
in the last two chapters, that not only static but also dynamic properties of
AFMs are influenced by the interaction between strains and Néel vector, such
that the orientation, shape and pinning of a domain wall is determined by the
interaction strength.
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Figure 7.9.: Potential (left) and force (right) which correspond to a shift of a
180° domain wall with frozen relative strains away from equilib-
rium. The pinning potential approaches a constant value for large
values of X and the repulsive force therefore decreases to 0 after
going through an extremum.

α β γ

0.213± 0.004 1.75± 0.03 0.633± 0.005

Table 7.7.: Fitting parameters of the fit in Fig. 7.10 to the model α(1+β/νe)+
γ.
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Figure 7.10.: The Pinning force against the parameter νe. The calculated data
(blue) was fitted which is also shown (red). The fitting parame-
ters are in Tab. 7.7
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8. Conclusion and Outlook

We have computed the energy of magnetic domain walls in collinear AFMs in
presence of magnetoelastic interactions with respect to the orientation of the
domain walls in the system. We have seen that incompatibilities of sponta-
neous strains for 90° domain walls increase the energy and lead to two preferred
axes for the domain wall alignment, where the incompatibility is 0. Further
without incompatibilities in 180° domain walls, the strains which are localized
at the domain wall also induce a similar anisotropy of the domain wall.
We have shown that the width of a domain wall shrinks with stronger mag-
netoelastic coupling and also quantified this effect. For a flat domain wall
strains act as an effective uniaxial anisotropy along the currents Néel vector
axis in the respective domains. Thus, the anisotropy constant in the domain
wall width without coupling is rescaled to the sum of anisotropy and magne-
toelastic coupling strength. Such an increase in the anisotropy then naturally
leads to thinner domain walls.
To further explore the domain wall anisotropy we determined the shape of a
closed domain wall loop under magnetoelastic coupling. When the loop has
a fixed length, the minimal energy always corresponds to a rectangle whose
sides go along the domain wall easy axes, independent of all coupling con-
stants. In this case the shape of domain wall loop is purely determined by the
effect of the magnetoelastic coupling. If the area enclosed by the loop is fixed
the anisotropy and exchange stiffness, which prefer a circular shape, compete
against the magnetoelastic coupling and we receive shapes inbetween circles
and squares. How far a shape tends to a circle or square shape is determined
by the ratio of magnetoelastic coupling to anisotropy.
Finally, we have shown that 90° domain walls are pinned when the sponta-
neous strains are frozen. The role of strains as an additional anisotropy in
both domains lead to an increase in the energy when the domain wall pro-
file is changed, thus creating a localised magnon mode. We have quantified
this mode by computing its oscillation frequency and further determined the
strength of the pinning by calculating the force which acts on the domain wall
after a shift from the pinning center. We repeated the steps for 180° domain
wall but the pinning is now induced by the strains which are localized at the
domain wall and not the spontaneous strains. Thus, while the repulsive force
of a 90° wall saturates to a fixed value, as the spontaneous strains are present
in the whole domain, in a 180° wall the force decreases to 0 far away from the
wall, when the strains at the domain wall are decayed.
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8. Conclusion and Outlook

To proceed with the investigation of the static phenomena, a possible way
is to study boundary effects onto the domain wall anisotropy. From this, we
can move on and place the AFM onto a nonmagnetic substrate. The incom-
patibility of spontaneous strains at the AFM substrate interface leads to a
multi-domain system and may also effect the shape of the domain walls. If we
replace the paramagnetic substrate by a FM, the interaction between the order
parameters of FM and AFM will further influence the domain wall anisotropy.
The demagnetization field of the FM and the magnetoelastic interactions in the
AFM strive to different domain structures. Thus, a strong coupling between
FM and AFM order parameters will possibly lead to some shape in between
structures and to a new domain wall anisotropy. Especially the closed domain
wall loop will change its shape away from the purely magnetoelastic square.
Aside of this, it would be useful to investigate the effect of the magnetoeal-
stic coupling onto other AFM quantities e.g. the spin flop field in uniaxial
AFMs [74]. Another step to go from this work, is to consider more complex
magnetic profile than a two domain system. The obtained knowledge of how
strains and magnetic degrees of freedom interact could then be compared to
experimental data. This will allow to find the role which the magnetoelastic
coupling plays in the domain profile and helps to understand the equilibrium
domain structure of AFMs.

In the dynamical regime, a possible next step is to compute more quanti-
ties of the pinned domain wall e.g. reflection and transmission coefficient of
spin waves. In the case of a 90° wall it could also help to make the calculations
more accurate by including the relative strains. Another way to proceed is to
drop the approximation that the lattice is frozen and to include the time de-
pendency of strains. This will lead to very complex differential equations and
requires numerical simulations or simplified situations e.g. a domain wall mov-
ing at constant speed but will help to determine the dynamical behaviour of an
AFM on longer time scales. Another suggested direction for future research,
is to study the switching of the AFM state by applying strains. The role of
the strain as an effective anisotropy allows to define an easy axis and therefore
the magnetic profile. With an appropriate change of the strain profile, the
easy axis and thus the magnetic profile will change. To study the mechanism
of such a switching we need to consider the dynamics of the Néel vector under
a time dependent external strain field. Experiments already provided results
in this direction [75], so a theoretical study would be desirable.

In conclusion, we have shown that the presence of magnetoelastic interaction
influences static and dynamic properties of AFMs, thus making it necessary
to study different effects from the interaction in order to understand the be-
haviour of the AFM domain structure.
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A. Strains Corresponding to a Uniform
Magnetic State

In order to compute the spontaneous strains for a magnetic system we need to
know the strains corresponding to a uniform magnetic profile. We find them
by minimizing the energy terms from chapter 2 for constant strains

0 =
∂(Welas +Wme)

∂uij
, i, j ∈ {x, y, z}, (A.1)

such that the stress in the system is 0. This provides six equations which
define the equilibrium strain profile

0 =
2µ(1− ν)

1− 2ν
uxx +

2µν

1− 2ν
(uyy + uzz) + λ(n2

x − n2
y) (A.2)

0 =
2µ(1− ν)

1− 2ν
uyy +

2µν

1− 2ν
(uzz + uxx)− λ(n2

x − n2
y) (A.3)

0 =
2µ(1− ν)

1− 2ν
uzz +

2µν

1− 2ν
(uxx + uyy) (A.4)

0 = 4µuxy + 4λnxny (A.5)

0 = 4µuyz (A.6)

0 = 4µuzx (A.7)

Equations A.5, A.6 and A.7 directly show

uxy = − λ

2µ
2nxny (A.8)

uyz = uzx = 0 (A.9)

Subtracting equation A.3 from A.2 gives

0 =
2µ(1− ν)

1− 2ν
(uxx − uyy)−

2µν

1− 2ν
(uxx − uyy) + 2λ(n2

x − n2
y)

= 2µ(uxx − uyy) + 2λ(n2
x − n2

y)

After reordering and with similar calculations for equation A.4 we get
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uxx − uyy = −λ
µ

(n2
x − n2

y) (A.10)

uxx − uzz = − λ

2µ
(n2
x − n2

y) (A.11)

uyy − uzz =
λ

2µ
(n2
x − n2

y) (A.12)

Now we can add equations A.11 and A.12, which gives 2uzz = uxx + uyy.
Together with equation A.4 it follows that uzz = 0 and therefore

uxx = − λ

2µ
(n2
x − n2

y) (A.13)

uyy =
λ

2µ
(n2
x − n2

y) (A.14)

The spontaneous strain of a multi-domain system then takes the in this section
computed values for in each domain respectively and flips instantly at the
domain walls.
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B. Solution of the 2D Navier Equation
with a Force with One Dimensional
Domain

Note: All calculation rules, that were used here for the Fourier transform were
taken from [76].
Consider the equation

∇2u(ξ, η) + σ∇(∇ · u(ξ, η)) = f(ξ) = ∂ξα(ξ) (B.1)

with u = (uξ, uη)
T ∈ L1

loc(R2), α = (αξ, αη)
T ∈ L1

loc(R2) and∇ = eξ∂ξ+eη∂η,
where L1

loc is the space of locally integrable functions. The derivatives are
interpreted as weak derivatives. We want to Fourier transform the upper
equation, but since the functions only need to be locally integrable we cannot
necessarily do this. If we further restrict the functions to be non diverging we
can formally still define a Fourier transform, where possible divergences in the
Fourier integral, will be given by a δ-function e.g.

∫
R dx exp(ikx) = 2πδ(k)

(cf. [77]). Let v be the Fourier transform of u and β be the Fourier transform
of α. Then the full Fourier transformation of eq. B.1 gives

−k2v(kξ, kη)− σk(k · v(kξ, kη)) = 2πkξδ(kη)β(kξ). (B.2)

The upper equation can be solved for the components vξ and vη of v to receive

vξ(kξ, kη) = −
√

2πikξδ(kη)

(
k2
ξ + (1 + σ)k2

η

)
βξ(kξ)− σkξkηβη(kξ)

(1 + σ)(k2
ξ + k2

η)
2

vη(kξ, kη) = −
√

2πikξδ(kη)
−σkξkηβξ(kξ) +

(
(1 + σ)k2

ξ + k2
η

)
βη(kξ)

(1 + σ)(k2
ξ + k2

η)
2

(B.3)

We transform back into the real space by first computing the integral

ṽξ(kξ) :=
1√
2π

∫
R
dkηvξ(kξ, kη) exp(−ikηη) = −i

βξ(kξ)

(1 + σ)kξ

ṽη(kξ) :=
1√
2π

∫
R
dkηvη(kξ, kη) exp(−ikηη) = −i

βη(kξ)

kξ

(B.4)
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B. Solution of the 2D Navier Equation with a Force with One Dimensional
Domain

Multiplying these expressions with ikξ and performing an inverse Fourier
transform then yields

∂ξuξ(ξ) =
αξ(ξ)

1 + σ

∂ξuη(ξ) = αη(ξ)

as the homogeneous solution of eq. B.1. The dependency of η got lost in the
integral of eq. B.4 so derivatives of u with respect to η are 0. If we interpret
u as a displacement, the associated strains then are

uξξ(ξ) = ∂ξuξ(ξ) =
αξ(ξ)

1 + σ

uξη =
1

2
∂ξuη(ξ) =

αξ(ξ)

2
uηη = 0

(B.5)
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C. Simulation of the Domain Wall
Anisotropy with MuMax3

C.1. 180° Domain Wall

MuMax3 is a software to simulate FMs in a micromagnetic picture. In the
static case the software can also be used for an AFM, when the normalized
magnetization m is interpreted as the Néel vector and demagnetization is
turned off. We simulate a thin film of one cell along z and a square geometry
of 128 cells in the xy-plane. The cell size is 3.5 nm and the saturation mag-
netization i.e. the absolute value of the magnetization in each cell was chosen
to be M sat 800 kA/m. For our simulation we used the already available
exchange interaction and uniaxial anisotropy (along z). They are defined over
the parameters A (which is the same as we use in the calculations) and Ku1
(= K1). Further we implemented a field to imitate another uniaxial anisotropy
along x with the strength parameter Kx (= K2). This is done by defining a
new energy densityW which corresponds to the anisotropy energy density and
the effective magnetic field −∂W/∂(mM sat). The strains are introduced as
fields which depend on the magnetization corresponding to eq. 3.6 and the
energy densities containing strains as well as their effective fields are included
in the system. The strength of the magnetoelastic coupling is tuned by the
parameter l such that u0 = l/Kx. All the parameters, that were used are in
Tab. C.1. For four different values of l we scan through different angles of ψ
and determine the energy of the domain wall. This is done by an initializing
a two domain system with a wall normal to ψ and relaxing the system. In
order to not have boundary effects the square geometry is rotated with the
domain wall. The results from the simulation are shown in Fig. C.1. They
reproduce the qualitative results from the calculations but the depth of the
minima varies compared to Fig. 3.1. This is not surprising, since we compare
an infinite and continuous to a finite and discrete system. Nevertheless, the
similar qualitative behaviour verifies the results obtained in sec. 3.1 also for
finite size systems.
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C. Simulation of the Domain Wall Anisotropy with MuMax3

A [J/m] Ku1 [J/m3] Kx [J/m3]

10−11 −105 103

Table C.1.: Parameters which are used in the simulation of the two domain
system for every simulation. M sat is the saturation magnetiza-
tion
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Figure C.1.: Energy E for a 180° domain wall plotted against the domain
wall orientation angle ψ for different values of the dimensionless
magnetoelastic coupling parameter u0 = l/Kx determined with
MuMax3.

C.2. 90° Domain Wall

Now we want to also simulate a 90° domain wall with spontaneous strains.
For this we replace the uniaxial anisotropy along x by an in plane anisotropy
with x and y as easy axes with the strength Kxy = Kx. Other parameters
stay the same. The strain fields are now constants in two regions and thus
are introduced as an uniaxial anisotropy in the respective domains. Since the
spontaneous strains are quadratic in the Néel vector of the domain and the
strains itself occur quadratically in the elastic energy density the anisotropy
is of fourth order. Together with the compensating strains the strain scales
with ψ over uxx ∼ ±1 + cos(2ψ) and uyy ∼ ∓1 + cos(2ψ). The elastic energy

62



C. Simulation of the Domain Wall Anisotropy with MuMax3

density consists of terms with u2
xx + u2

yy and uxxuyy and the strength of the
additional anisotropy will therefore be l(1 + cos2(2ψ)) with the strength pa-
rameter l. The results for the energy are shown in Fig. C.2. There we see
minima at the expected angles and further that the depth of the minima is
significant larger than for the situation of a 180° domain wall with relative
strains. While the first result may be viewed as trivial due to the strength of
the effective anisotropy the second observation demonstrates that the effect of
incompatibilities onto the equilibrium domain energy is much larger than the
effects of relative strains as argued before. This verifies the argument that it
is enough to consider incompatibilities for non 180° domain walls to find their
anisotropy.

u0=0.1
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Figure C.2.: Energy E for a 90° domain wall plotted against the domain wall
orientation angle ψ for different values of the dimensionless mag-
netoelastic coupling parameter u0 = l/Kxy determined with Mu-
Max3.
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D. Additional Material Calculations of
Pinned Domain Walls

D.1. Variational Principle for a Pinned 90° Domain
Wall with Different Test functions

In this section we apply the variational principle from sec. 6.1.3 to more test
functions in order to justify the result from the hyperbolic approach. We
consider a Gaussian and a Lorentzian as test functions. These approximations
of the ground state with a Gaussian and Lorentzian have the following form

ψGβ (X ) =

(
2β

π

)1/4

exp(−βX 2)

ψLβ (X ) =

(
2β3

π

)1/2
1

β2 + X 2
.

Similar to sec. 6.1.3 we scan through β and search for the minimum in

〈ψG/Lβ |H90 |ψG/Lβ 〉. The results with linear fit are shown in Fig. D.1 and
the fitparameters are in Tab. D.1
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Figure D.1.: Data and linear fit of the lowest order eigenvalue of eq. 6.4 deter-
mined over the variational principle with a Gaussian (left) and
Lorentzian (right) test function. The parameters of the fit are
given in Tab. D.1. The error bars are to small to be shown in
the plot.
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D. Additional Material Calculations of Pinned Domain Walls

a b

G 3.31± 0.01 0.178± 0.006

L 3.27± 0.01 0.154± 0.005

Table D.1.: Parameters of the fit in Fig. D.1 to the model au0 + b. The label
G or L distinguishes between the Gaussian and Lorentzian test
function.
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D. Additional Material Calculations of Pinned Domain Walls

D.2. Ground State Eigenvalues for a pinned 180°

Domain Wall for Different Poisson Ratios
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Figure D.2.: Data and Fits for the ground state eigenvalues, which were deter-
mined over the WKB approximation in sec. 7.1.2. The Fitmodel
is au0 + b, the fitparameters are in Tab. D.2. The errors are to
small to be visualized in the plot.
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D. Additional Material Calculations of Pinned Domain Walls

a b

1/νe = 0.1 0.837± 0.005 1.18± 0.03

1/νe = 0.15 0.968± 0.005 1.18± 0.03

1/νe = 0.2 1.09± 0.01 1.19± 0.03

1/νe = 0.25 1.21± 0.01 1.21± 0.03

1/νe = 0.3 1.32± 0.01 1.22± 0.03

1/νe = 0.35 1.43± 0.01 1.25± 0.03

1/νe = 0.4 1.53± 0.01 1.27± 0.03

1/νe = 0.45 1.63± 0.01 1.28± 0.03

Table D.2.: Parameters of the fits in Fig. D.2 to the model au0 + b.
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D. Additional Material Calculations of Pinned Domain Walls
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Figure D.3.: Data and Fits for the ground state eigenvalues, which were deter-
mined over the variational principle in sec. 7.1.3. The Fitmodel
is au0 + b, the fitparameters are in Tab. D.3. The errors are to
small to be visualized in the plot.
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D. Additional Material Calculations of Pinned Domain Walls

a b

1/νe = 0.1 1.97± 0.01 0.216± 0.009

1/νe = 0.15 2.06± 0.01 0.225± 0.010

1/νe = 0.2 2.16± 0.01 0.234± 0.010

1/νe = 0.25 2.25± 0.01 0.244± 0.011

1/νe = 0.3 2.35± 0.01 0.254± 0.011

1/νe = 0.35 2.44± 0.01 0.264± 0.012

1/νe = 0.4 2.53± 0.01 0.275± 0.012

1/νe = 0.45 2.62± 0.01 0.286± 0.012

Table D.3.: Parameters of the fits in Fig. D.3 to the model au0 + b.
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D. Additional Material Calculations of Pinned Domain Walls
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Figure D.4.: Fitting parameter a of the fit with the model au0+b to the Eigen-
value of H180 with respect to the strength of the magnetoelastic
coupling u0 for different values of νe.
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Figure D.5.: Fitting parameter a of the fit with the model au0+b to the Eigen-
value of H180 with respect to the strength of the magnetoelastic
coupling u0 for different values of νe.
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