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1. Introduction

The demand for smaller and faster computer technologies is rising fast. Electrical
currents are used for data storage devices as RAM and HDD in most computers to-
day [41]. However, those setups are at the brink of their minimal size. Interactions
between information cells and overheating of the devices complicate further progress
[4]. In contrast, magnetic devices, which use the spin degree of freedom, do not heat
up and can be manufactured in nanometre sizes. Magnetoresistive RAM or MRAM
is one possible application [35].
Another promising spintronic device is the magnetic racetrack memory system [34]
[35]. Spin-polarised currents can create and move magnetic domain wall structures
between two oppositely magnetised domains in ferromagnetic nanowires [38]. The
magnetisation of a domain encodes a bit of information. It has been validated ex-
perimentally that the domain walls can be moved with velocities up to 750ms−1 [35].
The combination of a nanowire sized system with a high density of domains and the
possibility to move the information that fast leads to a highly enhanced computer
speed. This enables data analysis faster than ever. Immense information like genetic
code could be saved and studied to tackle diseases based on simulations instead of
trials.
It is essential to know the static and dynamic domain wall properties to build such a
device. This thesis is focused on the mathematical description of those characteristics
for the ferromagnetic and the synthetic antiferromagnetic case. At first, the micro-
magnetic ferromagnetic LLG equations are formulated and domain walls are classified
[38]. Also, racetrack memory system traits are discussed [34] [35].
The third chapter is based on the recalculation of all ferromagnetic qualities. The
domain wall profile and width describe the static case [46]. A collective coordinate
approach can describe the domain wall movement along the nanowire by spin cur-
rents [36] [37] [45]. The domain wall creation is discussed at a pinned magnetisation
point for currents above a critical value [38] [39]. This current is compared to a larger
ferromagnetic instability current [32]. It can be seen that the domain wall creation
and movement are possible for the ferromagnet and that racetrack systems can be
developed.
The new calculations of the thesis are shown in chapter 4. In contrast to a ferro-
magnet, a synthetic antiferromagnet is not constraint in size because it has no net
magnetisation. The smallest and fastest racetrack devices could be possible [35]. It is
important to know if domain walls can be created and moved in such a system. An-
tiferromagnetic LLG equations are defined and used to calculate a shedding current
as in the ferromagnetic case [19] [23] [28] [38]. Then, it is compared to the instability
current of the system.
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1. Introduction

At last, simulations of synthetic antiferromagnetic domain walls are presented in chap-
ter 5 [17] [50]. They are used to confirm the theory of the shedding current and
validate a set of material parameters. Finally, the simulation checks the instability
current plausibility.
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2. Domain wall and micromagnetism
basics

This chapter is an outline of the main equations of micromagnetism. At first, the
concept of magnetic domain walls is described. Then, one-dimensional nanowire
systems are justified as realistic systems. After that, the Landau-Lifshitz-Gilbert
(LLG) equation for ferromagnetic systems is developed. This is followed by an
explication of all effective field terms arising in this thesis for the equation. In the
end, the spin-transfer torque is introduced and explained for one-dimensional systems.

2.1. Domain walls

Ferromagnetic systems are spin systems with a majority of spins or magnetic
moments pointing along the same direction. The latter can be measured as a
macroscopic magnetisation m. A quasi-one-dimensional ferromagnetic system has
two ground states, which are the two antiparallel magnetisation directions. A region
with a constant magnetisation value is called a domain. Magnetic systems with the
geometry of a wire in the nanometre length scale in size are called nanowires. The
two ground state domains are energetically equal, as the ground state of the system
is the energetic minimum. However, a merging of both domains is not a ground
state any more, since two magnetic moments with an opposite direction would be
adjoining neighbours. This status would be energetically unfavourable. That is why
a structure called domain wall will form in between those two domains separating
both and reaching a stable state.
A domain wall is characterised by a constant rotation of the magnetisation from one
state to another. Usually, this can occur in the two different ways shown in figure 2.1.
The axis of this system is given by the red, blue and green vectors shown in the top
left. The magnetisation changes colour according to the direction it is pointing. In
both cases displayed in the figure, the possible ground states are either pointing along
the red axis or antiparallel. The domain wall in the left nanowire rotates orthogonally
to the plane given by the red and green axes changing in the blue direction. A
domain wall with such a rotation perpendicular to the domain wall propagation
direction is called the Bloch wall. The second case is given by the nanowire on
the right. The magnetisation rotates in the plane given by the red and green axes
along the domain wall propagation direction. This case is called the Néel domain wall.

Another way to characterise a domain wall depends on the ground state configuration
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2. Domain wall and micromagnetism basics

Figure 2.1.: The plot displays a one-dimensional nanowire characterised by magneti-
sation vectors. The two ground states of the magnetisation are pointing
along the red axis or antiparallel to it. Then, two different types of do-
main walls are possible. A Bloch domain wall is shown on the left. It
is characterised by a magnetisation rotation perpendicular to the domain
wall propagation direction. The domain wall shown on the right is a
Néel domain wall, a domain wall with a magnetisation rotation along the
domain wall propagation direction. Source: Author’s illustration.

Figure 2.2.: The plot displays a one-dimensional nanowire characterised by magneti-
sation vectors. The two ground states of the magnetisation are pointing
to the left or pointing to the right. The case shown in the top part is a
tail-to-tail domain wall where the ground state magnetisation vectors are
pointing away from each other. The case shown at the bottom is called
head-to-head domain wall, where the ground state magnetisation vectors
are pointing towards each other. Source: Author’s illustration.
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2. Domain wall and micromagnetism basics

itself independently of the rotation sense of the domain wall. When the two ground
states are antiparallel, they either can point towards each other or away from each
other just as for a usual ferromagnet. These two configurations are shown and named
in figure 2.2. On the top, both magnetisation vectors are pointing away from each
other. This is called a tail-to-tail domain wall, since the heads of the vector arrows are
pointing away from each other. The bottom case shows both ground state magneti-
sation vectors pointing towards each other, pointing head-to-head vector wise that is
why such a domain wall is called a head-to-head domain wall.
Both of these configurations can exist as a Bloch or Néel domain wall. Hence, domain
walls are characterised by both properties. Even though domain walls exist in higher
dimensions than one dimension, the main part of this thesis focuses on domain wall
properties in one dimension. This is due a focus on a future application in racetrack
memory systems built in nanowires.

2.2. Dimensionality of the nanowire

Up to this point it is ambiguous how a one-dimensional nanowire system can be
realised in reality. Of course, this is an approximation for a system in two or three
dimensions. A one-dimensional Ising model as a chain of single atoms interacting
with each neighbour, but far away from any external source besides an electron
current applied, is impossible to build.
However, several methods for a creation of lower dimensional systems exist with a
size in the order of 10nm [13]. For example, ferromagnetic full-Heusler alloys can be
produced with a thickness of 20nm by the molecular beam epitaxy method, in which
the material is growing layer by layer on a substrate [49]. While these systems are not
one dimensional, they are small enough to be treated as being one dimensional. In the
ferromagnet, neighbouring spins are parallel independently of the three dimensions.
The neighbour to the left is the same as the one below in a spin lattice system. That
is why the approximation to magnetisation is valid.
A 180° domain wall rotates from one direction to the other. It can also be treated
one-dimensionally even though the system is not because the spins of a plane in the
thin film are the same. Each slice of the wire contains parallel aligned magnetic
moments. They change along with one of the three dimensions towards the other
ground-state magnetisation, making the other two obsolete. This holds for Bloch
and Néel walls. Also, the sizes of both domain wall types are typically in the size of
hundreds of nanometres [14]. Therefore, only this one dimension is the relevant one
in terms of magnetisation change.

2.3. The Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert equation - called the LLG equation - is a fundamental
equation to describe the time evolution of the magnetisation in a ferromagnetic sys-
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2. Domain wall and micromagnetism basics

tem. It can be used to determine domain wall properties.
The starting point of this formalism is given by the atomistic description of a ferromag-
netic system. The Ising model describes a spin lattice system favouring either parallel
or antiparallel aligned spins in an external magnetic field by interactions between
nearest neighbours [3] [24]. This model is used to describe ferromagnetic behaviour
and the phase transition to the ferromagnetic state.
If the correlation length of spins is greater than the next neighbour interaction, a
coarse graining is possible as adjoining neighbours behave similarly. This process
can be described by a block spin transformation combining neighbouring spins to a
new total value [3]. An iteration of this process leads to a system described by the
magnetisation instead of the single spin values. All spins pointing along one direction
correspond to a saturated magnetisation that will be normalised to a length of |m| = 1
in this thesis.
The rescaling of such spin systems to larger length scales shows that the behaviour of
such a magnetic state can be characterised by a single parameter, the order parame-
ter m in the ferromagnetic case. This order parameter describes the structure of the
different phases of the system and the phase transition point in between. Hence, in
this micromagnetic description, the time evolution of the magnetisation is the relevant
physical quantity to help describe how ferromagnetic systems behave.
The LLG equation originates from both Landau and Lifshitz [29], who wanted to de-
scribe the time evolution of ferromagnetic systems in an effective magnetic field. This
includes external magnetic fields applied to the system as well as all interactions be-
tween the magnetic moments and material properties summarised in a total magnetic
energy E. The simplest version without damping is given by the following equation
[51] from Landau and Lifshitz [29]:

ṁ = γm×Heff with Heff =
δE

δm
. (2.1)

It describes the time evolution of the magnetisation vector ṁ at a point r making a
precession movement around the effective field Heff felt at this point. The length of
the magnetisation vector is constant and the origin of the vector has a fixed coordi-
nate. This implies that it can only rotate around this origin and will precess around
the energetically favourable direction. The possible change of the magnetisation vec-
tor with a constant magnitude is perpendicular to the magnetisation itself. Hence, it
can be displayed by a vector moving along the surface of the possible movement of m
given by a sphere, just as shown in figure 2.3. The constant in front of the effective
field term γ is called gyromagnetic ratio [51] depending on the Landé-factor and the
Bohr magneton.
Another term added by Gilbert [18] phenomenologically explains damping of the pre-
cession movement of m until it is pointing strictly along the effective field direction.
This is also called relaxation of the magnetisation towards the effective field direction
[20]. The equation (2.1) changes to the following form [18]:

ṁ = γm×Heff + αm× ṁ with Heff =
δE

δm
. (2.2)
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The damping constant α is called Gilbert damping parameter. Figure 2.3 shows how
each of the two LLG equation terms changes the magnetisation movement.

Figure 2.3.: The plot displays the movement of the magnetisation vector moving ac-
cording to the LLG equation. (a) shows the precession of m around the
effective field based on the m×Heff term. (b) shows the damping of m
according to the αm × ṁ term. (c) shows the final motion of m with
both terms combined. Source: Abert 2013: [1].

2.3.1. The effective field

The effective field Heff builds the main part of the LLG equation as it describes the
precession of the magnetisation. Next, all contributing terms of this field are elabo-
rated. Heff = δE

δm is the definition of the effective magnetic field, each magnetisation
vector is pointing along in the ferromagnet as a functional derivative of the total mag-
netic energy with respect to the magnetisation. It is the magnetic field felt by each
magnetic moment of the system based on the interaction with external magnetic fields
and other magnetic moments. Also, material properties can lead to a energetically
favourable magnetisation direction or twisting.
The total magnetic energy or free energy E described in this thesis is the sum of the
major interactions used to model the ferromagnetic and antiferromagnetic systems.

E =

∫
dV (Eexch + Eanis + EDMI + Eext) (2.3)

External magnetic fields Eext are added for clarification so that all contributions add
up to a total integral, but they will not be used further. The equation shows how all
interactions add up and are integrated over the space of the system V to the total free
energy E.
The first part is given by the exchange interaction Eexch. It originates from the spin
coupling term in the Ising model. For a ferromagnetic state, the energy of the Ising
model is minimal if neighbouring spins are parallel aligned and reach the maximum
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2. Domain wall and micromagnetism basics

when they are antiparallel, called collinear antiferromagnetic state. Deviations be-
tween two neighbouring spins are penalised. They will rotate until they are parallel
and in the energetic minimum state. This is why the exchange interaction is also called
stiffness interaction since it models stiffness between two spins when one of both is
rotated away from the minimum.
The expression resolves to a gradient term after coarse-graining is applied:

Eexch = A(∇m)2 (2.4)

with the exchange interaction constant A determining the strength of the stiffness.
The second part of the free energy is the anisotropy a system can have. Materials with
anisotropic behaviour have energetically favourable magnetisation directions. This can
occur due to material properties such as different crystal structures, geometries such
as thin films or it can be through certain temperatures [25]. The exchange interaction
of ferromagnetic systems favouring neighbouring parallel spins in a system with an
anisotropic direction causes all spins to point along the same direction - with the
anisotropy or against the direction - as the ground state of the system. The symmetry
considered in this thesis is an easy axis or uniaxial anisotropy for a one-dimensional
nanowire system. This means that the ground state directions are either along the
nanowire direction or antiparallel to it. Setting this one-dimensional system along the
x-axis leads to the following anisotropy model of the thesis:

Eanis = λ(1−m2
x). (2.5)

The term of the form 1−m2
x is defined this way because the ground state mx = ±1

will lead to a vanishing energy contribution instead of a negative one. It could also be
defined by just the m2

x term. The only difference is an energy shift of the ground state
energy, which does not change the effective field. The anisotropy constant λ is greater
than zero to get a energetically favourable magnetisation direction. A negative λ can
be used to discourage the magnetisation direction for the system specifically.
A more general approach to the anisotropy is given by a term of the form 1− (k ·m)2

for arbitrary anisotropy directions k. It could also be the case that there is more
than one favourable direction. For example two orthogonal states are energetically
the same. In such cases, a 90° domain wall is built between the states instead of a
180° one. However, the typical domain walls are 180° ones in this thesis. Also, higher
order anisotropy terms are possible but not considered.
The third term considered is the Dzyaloshinskii-Moriya interaction [12] [33], which
is called DMI in this thesis from now on. It is a chiral interaction favouring twisted
structures because it originates from spin-orbit interactions. It is also called asymmet-
ric exchange because it changes the chirality based on the order of magnetic moments
considered for the interaction. Systems with ”broken spatial inversion symmetry” [22]
prefer a chiral formation of the magnetisation. This can either be a right-hand or
left-hand twisting. It is most generally modelled by EDMI = Dijkmi∂jmk [22] as a
term linear in spatial derivatives. mi and mk denote two single coordinates of the
magnetisation vector m and Dijk is the interaction strength as a third rank tensor,
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2. Domain wall and micromagnetism basics

which can be facilitated for different crystal symmetries. The DMI is different de-
pending on whether a particle is at the surface or in the bulk.
However, the DMI for the one-dimensional nanowire reduces to the following term:

EDMI = Dm · (∇×m) = Dm · (x̂× ∂m) (2.6)

in the ferromagnetic case. The interaction strength is not a tensor anymore but
modelled as a simple scalar D. The spatial derivative ∇ resolves to a single derivative
x̂ ∂
∂x = x̂∂ in the one-dimensional case for a wire along the x direction since the only

spatial change is along the wire direction.
Other interactions in ferromagnetic or antiferromagnetic systems are combined in
the Eext term which is neglected. It contains external magnetic fields, which are not
applied within the thesis, and dipolar field interactions. The latter is negligible in
magnitude for antiferromagnets [26]. Also, higher order contributions in magnetisa-
tion and interactions between three or more magnetic moments are not considered.

2.3.2. Spin-transfer torque

It is possible to influence and change magnetic systems with spin-polarised currents.
The LLG equation can be expanded by another term accounting for this formalism.
Spin-polarised currents are electrical currents where a large number of spins are point-
ing along the same direction. The magnitude of the polarisation P can vary between
zero and one. A theoretical usage of such currents for manipulating ferromagnetic
systems was first predicted by Slonczewski [40] and Berger [7] in 1996.
The spins in ordinary electron currents are randomly distributed in all directions while
surpassing non-magnetic materials. However, if it enters a ferromagnet, an interface
scattering of spins blocks those having a different direction than the ferromagnet mag-
netisation while letting the parallel ones through the material [42]. This effect is used
for the giant magnetoresistance effect (GMR effect), where the electrical resistance
change of two ferromagnetic layers, separated by a non-magnetic layer, is measured
for the case of parallel and antiparallel aligned magnetisation directions. It was dis-
covered by the groups of Grünberg et al. [8] and Fert et al. [5] awarding them a Nobel
prize in 2007 due to the impact it has on implementations, such as the magnetoresis-
tive random-access memory called MRAM.
Such a spin-polarised current can be subjected to the physical systems of interest in
this thesis, the one-dimensional nanowire. When the current is applied, the polarised
spins interact with the magnetic moments in the vicinity. The electrons exchange spin
angular momentum with the local magnetic moments so that they follow the mag-
netisation direction. However, in a domain wall structure, the electron spin follows
the magnetisation change of such a domain wall adiabatically. It changes direction as
shown in figure 2.4.
A polarised spin current is applied to a nanowire with a velocity ν from left to right
while having a starting spin direction to the left, just as the red magnetisation direc-
tion of the wire. A domain wall separates this left pointing region from a right pointing
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2. Domain wall and micromagnetism basics

one by a constant rotation of the magnetisation from left to right. The torque be-
tween electron and magnetic moment of the wire causes the spin of the electrons to
change along with the magnetic moment direction. However, neighbouring magnetic
moments along the domain wall region have slightly different spin directions. That is
why the magnetic moments already passed by the spins are pulled along the electron
spin direction, and the domain wall starts to move. This does not imply a movement
of the magnetic moments in the nanowire. It is just a rotation of the magnetisation
if it is not parallel to the electron spin direction. The effect of the spin change is due
to angular momentum conservation.
Mathematically, this effect can be described by newly added terms to the LLG equa-

Figure 2.4.: A one-dimensional wire system with two opposite magnetisation direc-
tions separated by a domain wall region in red is subjected to a spin-
polarised current with a spin direction to the left and a velocity ν to the
right in blue. The domain wall consisting of many magnetic moments is
varying gradually in space which causes the electron to change adiabat-
ically along with the magnetisation of the wire. However, the magnetic
moments to the left of the electron position also shift to the electron spin
direction, causing a domain wall movement. Source: Author’s illustration.

tion with damping (2.2). The spin-polarised current does change the magnetisation
direction by a torque if they are not parallel. Slonczewski’s ansatz from 1996 [40] can
be abstracted to a continuous limit of infinitely many and infinitely thin layers into
two terms getting the Landau-Lifshitz-Gilbert-Slonczewski equation [44]:

ṁ = γm×Heff +αm×ṁ− (ν ·∇)m+βm× (ν ·∇)m with Heff =
δE

δm
. (2.7)

The first term (ν ·∇)m describes the precession of the magnetisation around the spin
current direction as for the effective field. Therefore, the second term is a damping
of this precession perpendicular to the first term βm × (ν · ∇)m. It is proportional
to the dimensionless prefactor β, which is of the same order as the other damping
parameter α [44], describing the same effect to the magnetisation as the α dependent
damping term.
The second parameter occuring in this spin-transfer torque description is the spin
current velocity [38]:

ν =
PµB

2eMs(1 + β2)
j. (2.8)
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2. Domain wall and micromagnetism basics

It depends on the current polarisation P , the Bohr magneton µB, the electron charge
e as well as the saturation magnetisation Ms, which is set equal to one within this
thesis. It also depends on the damping factor β and the electrical current density
j. This means that the spin current velocity interacting with the magnetisation of
the ferromagnetic system is pointing along the same direction as the electrons move
j with a polarisation dependent strength. The effect is stronger when the current has
a higher polarisation.
In one-dimensional nanowire systems, the spatial derivative is modified to ∂ as men-
tioned for the DMI contribution to the total magnetic energy. This also means that the
spin current velocity needs to be applied along the wire direction to be fully utilised.
The spatial product ν · x̂∂ ensures this.
The theory following in the next chapters is based on one-dimensional ferromagnetic
nanowires and their static and dynamic domain wall description. Such systems can
be realised because each spin at any given point in space can be approximated to a
magnetisation vector showing dynamics by the LLG equation.
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3. Ferromagnetic domain wall description

This chapter points out the relevant state of research on ferromagnetic systems for
this thesis having described the governing equations in the last chapter.
First, the magnetic racetrack memory system is introduced as a potential application
for one-dimensional domain wall systems. Then, the magnetic energy of the ferro-
magnetic system is analysed and the width and profile of a ferromagnetic domain wall
in one dimension are determined based on the calculations of Tretiakov and Abanov
[46]. Next, the movement of one-dimensional domain walls with an applied current is
presented with a collective coordinate approach as in the scientific paper of Rodrigues
et al. [37].
The ferromagnetic LLG equation will be used to analyse a one-dimensional semi-
infinitely long nanowire system subjected to a spin current based on the calculations
of Sitte et al. [39] and Rodrigues et al. [38]. The stability of the system is not given
above a critical current threshold at that domain wall shedding starts.
The critical current of shedding calculated is compared to another critical current.
The second current calculated is the spin current beyond which the ferromagnetic
system will get unstable itself. This computation is based on the work of Masell et al.
[32].
This procedures have been discussed with Davi R. Rodrigues.

3.1. Magnetic racetrack memory

Before the mathematical description starts, a chapter is dedicated to the relevant phys-
ical system, namely the one-dimensional nanowire containing domain walls. A central
part of the calculations in this thesis are critical current determinations. Currents
exceeding those values affect domain wall movement and existence. In the paragraph,
a future application of domain wall systems is highlighted.
The use of computer technologies is rising fast and the demand for smaller and faster
devices is constantly rising. On the one hand, data storing devices have been a success
so far, but they have the problem of heating and scaling. On the other hand, magnetic
devices could operate more efficiently without temperature rising, and data bits could
be smaller than now. Spintronic devices use the spin degree of freedom of the electron
to store information as bits. However, components in the nanometre regime have now
reached a size that cannot be decreased any more [35].
Parkin et al. [34] [35] proposed a new method to digitally store information besides
the used principles of magnetoresistive random-access memory (MRAM) and magnetic
hard disc drives (HDD). They proposed a magnetic racetrack memory device. This
is a nanowire, as discussed in the theory chapter above, or a grid of nanowires. As
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3. Ferromagnetic domain wall description

discussed, magnetic domains within those wires, the ground states of the ferromagnet,
are separated by domain walls.
Each domain with a fixed length refers to a bit of information and the domain walls
separate two possible bits. This chapter concludes that a domain wall can be created
and shedded in a ferromagnet when subjected to a spin-transfer torque. Therefore,
the theory predicts that different domains and domain walls can be created in the
nanowire and moved by spin-polarised currents. After that, they can be read out at
a second point for further computation.
Figure 3.1 displays two different racetrack approaches. The racetrack shown at the
top is a ferromagnetic one built onto a substrate with a spin current applied along
the nanowire direction. The bottom racetrack shows a synthetic antiferromagnet
constructed from two ferromagnetic layers linked through a non-magnetic layer in be-
tween. The racetrack system domains are subjected to a spin current along the wire
direction as in the approach above.
The ferromagnetic racetrack displayed is the third version of those memory systems

Figure 3.1.: The plot displays two different approaches of the magnetic race track
memory system. The top one is a ferromagnetic nanowire on a substrate,
and the bottom one is a synthetic antiferromagnet on a substrate. Both
are subjected to a spin current along the wire to move the domain walls.
Source: Parkin et al. 2015: [35].

called racetrack 3.0. It inherits the property of its predecessor, version 2.0, which has
a significant magnetic anisotropy. This leads to narrow and robust domain walls that
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3. Ferromagnetic domain wall description

can be moved simultaneously in the same direction with the same speed. The material
of the 3.0 version is built from inversion symmetry missing structures to enhance the
DMI term in the magnetic energy of the system. Because of this missing symmetry,
it is possible to reach velocities of 350ms−1 for the domain wall movements instead of
100ms−1 without the chiral interaction [35].
The ferromagnetic chapter is centred on the domain wall creation and movement to
enable creating a racetrack memory system. However, each ferromagnetic domain has
a finite magnetisation value. Hence, they produce demagnetisation fields interacting
with each other. This is a limiting factor for the domain wall density that corresponds
to the data density stored in the wire.
Therefore, another racetrack method, the racetrack memory 4.0, was proposed as
a synthetic antiferromagnet or SAF. It is shown at the bottom of figure 3.1. The
racetrack is built from two sub-racetracks with a mirrored magnetisation. An anti-
ferromagnetic coupling is built by an ultra-thin layer in between. The main benefit
of the antiferromagnetic structure is that the demagnetisation fields do not exist in
an antiferromagnet. The net magnetisation of such a system is nearly zero as neigh-
bouring magnetic moments will rotate to neutralise the magnetisation. Therefore, a
higher density of domain walls can be achieved. Also, domain wall velocities of about
750ms−1 have been measured for such systems. Atomic layer deposition methods
fabricate such racetrack systems [35].
In the next chapter, an antiferromagnetic description for critical currents will be pre-
sented for that chapter’s ferromagnetic case.

3.2. Domain wall profile

Within this section, the domain wall profile of a ferromagentic nanowire system is
derived based on the scientific paper by Tretiakov and Abanov [46]. It is important
to analyse the domain wall properties before an application is feasible. The starting
point for this calculation is the total magnetic energy E of such a system. It is given
by the contributing interactions integrated over the nanowire volume

∫
dV :

E =

∫
dV (A(∇m)2 +Dm · (∇×m) + λ(1−m2

x)) (3.1)

with a given exchange interaction constant A, a DMI strength D and an easy axis
anisotropy along the nanowire direction x with a strength λ. For the ferromagnet, A
is a positive valued constant. The DMI strength D is assumed to be constant along
the wire. In the case of such a one-dimensional system, the spatial variation ∇ is just
given by the variation along the wire ∇ → ∂/∂x ≡ ∂.

E =

∫
dV (A(∂m)2 +Dm · (x̂× ∂m) + λ(1−m2

x)) (3.2)

The magnetisation m is saturated and normalised |m| = 1.
The LLG equation with spin-transfer torque (2.7) is used to describe the magnetisation
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3. Ferromagnetic domain wall description

dynamics. A constant valued magnetisation inherits the property of 0.5∂(m2) = ∂m ·
m = 0 meaning that the variation of m is perpendicular to m itself. Consequently,
the spatial variation of the magnetisation can be described by a plane of solutions
orthogonal to the magnetisation vector itself with two parameters Γ(x, t) and Λ(x, t)
depending on space and time describing the two independent directions. Such an
ansatz is shown in the following equation:

∂m = Γ(x, t)x̂×m+ Λ(x, t)m× (x̂×m). (3.3)

The Λ dependent term can be improved with the bac − cab rule for triple products
(A.1) into m × (x̂ ×m) = x̂ − mxm. Therefore, the x component of the deriva-
tive is given by ∂mx = 1 −m2

x. The squared derivative can be edited as well (B.1):
(∂m)2 = (1−m2

x)(Γ2 + Λ2).
In the simplest case where no current is applied ν = 0 the time independent configu-
ration minimizes the total magnetic energy E (3.2). The DMI term can be rearranged
to Dm · (x̂×∂m) = D∂m · (m× x̂) = −D∂m · (x̂×m), since it is a spatial product.
Afterwards, a completion of the square with the exchange term leads to:

E =

∫
dV (A

(
∂m− D

2A
(x̂×m)

)2

+

(
λ− D2

4A

)
(1−m2

x)). (3.4)

The minimum of this equation depends on two contributing terms. It depends on
the sign in front of λ − D2

4A . On the one hand, if 4Aλ < D2, then the second term
is negative. Therefore, the total energy is at the minimum if the 1 − m2

x factor is
maximal, constraining mx = 0. In this case, if ∂m = D

2A(x̂×m) holds, the first of the
two term vanishes. Then, the solution of m is given by a spiral because the spatial
variation of the magnetisation is always orthogonal to itself and the nanowire axis x.
While the x coordinate of m has to be zero to fulfil this constraint, the other two
dimensions can be set to sin(ωx) and cos(ωx), neglecting a phase factor, depending
on the chirality of the rotation. The ω of m = (0, sin(ωx), cos(ωx))T is given by the
prefactor in front of the rotation ω = D

2A .
On the other hand, if 4Aλ > D2, then the second term is positive and 1−m2

x needs
to be minimal for a total minimum of the magnetic energy. mx = ±1 are the two
saturated magnetisation values leading to such a minimum. Both are the different
ground states of the one-dimensional nanowire system. This implies that both are
equally favourable since they are energetically identical. That is why the system
should contain both states. Hence, a domain wall is needed to separate the ground
state magnetisation values to build a stable state.
The spatial variation of m given by equation (3.3) can be inserted into the equation
(3.4) using the properties given at (B.1):

E =

∫
dV (A(1−m2

x)(Γ2 + Λ2) +Dm · (x̂× (Γx̂×m+ Λm× (x̂×m))) + λ(1−m2
x))

=

∫
dV

(
A

(
Γ− D

2A

)2

+AΛ2 − D2

4A
+ λ

)
(1−m2

x).
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(3.5)

This term is minimised for Γ = D
2A which is the same as the spiral prefactor ω. A

parametrization of mx = tanh (f(x)) can be used to rewrite the total magnetic en-
ergy into an f(x)-only dependent form. f(x) is a function of the spatial coordinate x
along the nanowire describing the magnetisation value at this point. It is used for a
Lagrangian type description of the magnetic energy.
mx = tanh (f(x)) inserted into 1 − m2

x, which resolves to 1 − tanh (f(x))2 =
cosh (f(x))2−sinh (f(x))2

cosh (f(x))2 = 1
cosh (f(x))2 . The hyperbolic functions inherit the property of

cosh (f(x))2− sinh (f(x))2 = 1 for every value f(x). The Λ2 is f(x) dependent, which
is given by Λ = ∂f(x) (B.2). Hence, the total energy resolves to:

E = A

∫
dV

(
(∂f(x))2 − D2

4A2 + λ
A

)
cosh (f(x))2 = A

∫
dV

(
(∂f(x))2 + Ξ−2

)
cosh (f(x))2 . (3.6)

In this notation, Ξ−2 = λ
A −

D2

4A2 = λ
A − Γ2 is dependent on the Γ factor of the min-

imised energy term.
Although, the total magnetic energy is the sum of all interactions integrated over
the total space

∫
dV , this integration is a one-dimensional integral dx for the one-

dimensional nanowire. Moreover, the function f(x) as parametrization of mx is only
x dependent. Therefore, the total magnetic energy can be treated as Hamiltonian,
describing the total energy of the system. The Noether theorem states that ”every
continuous symmetry of a system entails a conservation law” (Altland and Simons
2010 [3]). For Hamiltonians, such symmetry is given by a missing direct dependency
of x to the integration parameter dx. The f(x) dependency occurs only indirectly and
therefore does not affect the Noether theorem.
Usually, a Hamiltonian is integrated over time dt, inheriting energy conservation if
it is not directly time-dependent. In this case, the conservation is a ”time” x that
leads to the constant energy of the system. This energy has to be the same at ev-
ery point meaning that the value at x → ∞ can be used. The energy has to vanish
at infinity because if it does not, the total energy of the system would be infinitely
large. Combining this fact with the Noether theorem, stating that the total energy is
conserved, implies that it has to be zero everywhere. Therefore, the integrand has to
vanish: (∂f(x))2 + Ξ−2 = 0. As a result, the function f(x) depends on x and Ξ after
integrating over x: f(x) = ± x

Ξ . The constant Λ is given by Λ = ∂f(x) = 1
Ξ , which is

x independent itself.
Based on this information, all three components of the magnetisation m can be calcu-
lated. The obvious starting coordinate is the mx direction because it is the one used
for the parametrization. mx = tanh (f(x)) = tanh x

Ξ and |m| = 1 = m2
x + m2

y + m2
z

can be combined:

1 = m2
x +m2

y +m2
z ←→ m2

x +m2
y = 1−m2

x = 1− tanh
(x

Ξ

)2
=

1

cosh
(
x
Ξ

)2 . (3.7)
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The y and z component can be parametrised by a sin (g)

cosh ( x
Ξ)

and cos (g)

cosh ( x
Ξ)

function de-

pending on g(f) because of sin (g)2 + cos (g)2 = 1. The derivative taken from the
ansatz dependent on g and the ansatz of the equation (3.3) can be compared to
determine g. The computation of one of the components is sufficient and leads to
g(f(x)) = xΓ = xD

2A (B.3).
Therefore, the magnetisation of a ferromagnetic domain wall in a one-dimensional
nanowire with a Dzyaloshinskii-Moriya interaction is given by a spiral solution of:

mx = tanh ((x− x0)/Ξ)

my =
cos (Γ(x− x0) + φ)

cosh ((x− x0)/Ξ)

mz =
sin (Γ(x− x0) + φ)

cosh ((x− x0)/Ξ)
.

(3.8)

This domain wall has a position x0 along the nanowire and a tilting angle of φ in
the y − z plane. The tanh (x− x0)/Ξ = mx rotates from one magnetisation value to
the other, having mx = 0 at x0. The rotation is classified by a width of the tangent
hyperbolic function that corresponds to the domain wall width:

Ξ =
1√

λ
A −

D2

4A2

=
2A√

4λA−D2
. (3.9)

In the case of no DMI, the width is given by
√
A/λ. Also, Γ = 0 as in the case of no

DMI, which shows that the my and mz component do not rotate as sine and cosine
along the domain wall but have a constant tilting angle dependency and a damping
factor of the cosine hyperbolic fraction with the width Ξ. This domain wall is a Néel
domain wall as shown in figure 2.1. The direction of the twisting from DMI is given
by the DMI chirality, whether it favours left-handed or right-handed spirals [46].
To summarise, in a system without DMI, the domain wall will have a width of

√
A/λ

depending on the exchange interaction strength A and the anisotropic interaction
strength λ. The exchange interaction favours a parallel alignment of the neighbouring
magnetic moments. This means that the exchange interaction favours a bigger wall
width. A larger wall has more magnetic moments within and the angle between the
neighbouring moments can be smaller.
However, the anisotropic interaction favours a magnetisation direction along the
anisotropic axis. This indicates that the spins having an angle to this axis are pulled
in this direction. A greater domain wall possesses more magnetic moments out of
plane of the anisotropic axis, which enhances the energy in the system. Therefore,
the anisotropic strength favours a smaller domain wall given by the λ−1 factor. An
interplay of both interactions leads to the resulting domain wall width.
Including DMI, a factor of D2 - the DMI strength - arises within the square root
dependency of the domain wall width. The DMI favours twisting structures and
neighbouring orthogonal spins, leading to smaller domain wall structures. Neverthe-
less, there is a critical value for the DMI strength D2 > 4Aλ at which the square root
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3. Ferromagnetic domain wall description

of the domain wall width gets imaginary. Above this critical value, the ground state
of the system will take on a spiral magnetisation direction where no domain wall can
be built. This shows that the DMI can lead to smaller domain wall structures and a
higher density of domains, which could be used for racetrack memory. However, this
DMI strength has a critical value above which the system can not form domain walls
at all.
The domain wall profile of a ferromagnetic nanowire system with exchange interac-
tion, an easy axis anisotropy and DMI with an applied spin current is determined
in the chapter on domain wall shedding because the formalism of the functional
derivative is needed to use the LLG equation needed to determine the profile.

3.3. Rigid body treatment of a domain wall

In the last section, a domain wall profile of ferromagnetic nanowires was calculated.
It will be shown that domain walls can be described as rigid structures with fewer
variables, as the domain wall structure will not change drastically at low energies.
The formalism can be used to determine the dynamics of domain walls - in the case
of ferromagnetic and antiferromagnetic nanowires - to see if and how they can be
implemented for applications such as a racetrack memory system. This section is
based on calculations of the scientific papers of Rodrigues et al. [37] [38] and the
corresponding Ph.D. thesis [36].
In a one-dimensional nanowire system with an easy axis anisotropy, the two ground
states - given by a magnetisation direction following the wire axis or antiparallel -
occur with the same probability. If both of them are present simultaneously, they
are separated by a domain wall structure. This is a stable state, as long as there
is no spin-polarised current applied that surpasses a critical value. In such a stable
nanowire system, the domain wall can be translated along the wire or rotated around
the wire axis without changing the profile of the domain wall.
If the current is greater than the critical value the domain wall will start to move along
the current direction. Nevertheless, the underlying profile of the domain wall depends
on the interaction strengths from the exchange, anisotropy and DMI, which was shown
in the previous chapter in terms of the domain wall width Ξ (3.9). Changing the profile
itself drastically would need currents higher than the critical current value so that it
is stronger than the interactions of the system and favouring different configurations
between the magnetic moments.
There could be a greater power consumption than necessary because the essential
thing needed for an application such as a racetrack memory system is a domain wall
movement that begins above the critical current. The regime reasonable to start
looking at first is the start of the domain wall movement where the domain wall profile
has a very similar structure to the time independent system. This approximation is
used to describe the domain wall movement along the nanowire by just the centre
coordinate and rotation of the domain wall instead of every magnetisation vector for
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small currents. The description in terms of such coordinates can be crucial to get
an unsophisticated domain wall movement. Without such a description, it would be
much harder to determine if an applied spin current can manipulate the movement of
a domain wall in such way that it can be used as an application.
A. A. Thiele [45] proposed a simplification to the LLG equation (2.2) in terms of the
position of a magnetic domain instead of the magnetisation. The approach can be used
in a very versatile way. Different domain wall properties [9] [47] or the dynamics of
more complicated structures such as skyrmions [15] [21] and antiferromagnetic systems
[48] can be determined. The position X or coordinate of the middle of the domain wall
and the angle Φ it has to a set axis at this point are the two collective coordinates or
soft modes used as governing degrees of freedom for the domain wall. A starting point
in all of the cases is the Poisson bracket behaviour of the magnetisation vector based
on its properties of an angular momentum {mi(x),mj(x̃)} = εijkmk(x)δ(x− x̃). This
magnetisation can be mapped to magnetic moments depending on the spin direction
which is behaving as an angular momentum m = −γL, {Li, Lj} = εijkLk.
The LLG equation (2.2) can be adapted into a Hamiltonian equation ṁ = {m, H}+
Ωm with a Poisson bracket and Ωm containing all damping terms. These Poisson
brackets derivatives depend on the generalised coordinates chosen to represent the
phase space of the system (q,p). Different coordinates, such as the soft modes of
the domain wall, will lead to different Poisson brackets and different Hamiltonian
equations. All of those conjugated momenta express their equations of motion in the
Hamiltonian formalism.
At first, the degrees of freedom of the magnetisation vector m need to be reduced to
the set of new coordinates to determine the Poisson bracket relation between those
new conjugated momenta. The magnetisation is represented as m(r, t) ≡m(r,η(t))
where the time dependency is pulled into the new set of coordinates η. The time
evolution of the magnetisation can be revised applying the chain rule:

ṁ(r, t) =
∑
ηi

η̇i∂ηi
m (3.10)

taking the summation over all new coordinates. In this formalism, the time derivative
ṁ(r, t) can be inserted into the LLG equation together with a multiplication by∫
dV (m× ∂ηi

m). The left side of the equation takes the following form:∫
dV (m× ∂ηi

m) · ṁ =

∫
dVm · (∂ηi

m× ṁ)

=

∫
dVm · (∂ηi

m× ṁ) =

∫
dVm · (∂ηi

m×
∑
ηj

η̇j∂ηj
m)

=
∑
ηj

∫
dVm · (∂ηi

m× ∂ηj
m)η̇j = Gij [η]η̇j .

(3.11)

At first, the spatial product is changed according to (A.3). Then, the ansatz for the
time derivative of the magnetisation is inserted. After that, a new quantity called
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gyroscopic tensor Gij [η] is defined. The right side can be treated similarly:∫
dV (m× ∂ηi

m) · (γm×Heff + αm× ṁ)

=

∫
dV (m× ∂ηi

m) · (γm×Heff + αm×
∑
ηj

η̇j∂ηj
m))

=
∑
ηj

∫
dV (γ(m2(∂ηj

m ·Heff) + (∂ηj
m ·m)(m ·Heff))+

αm2(∂ηi
m · ∂ηj

m)η̇j + α(∂ηi
m ·m)(∂ηj

m ·m)η̇j)

=
∑
ηj

∫
dV (γ∂ηi

m · δE
δm

+ α(∂ηi
m · ∂ηj

m)η̇j)

= γ
δE

δηi
+ αDij [η]η̇j

(3.12)

At first, the Lagrange identity (A.2) is used to rewrite the double cross product terms.
Then, m2 = 1 is used to revise the equation because the constant length of the vector
shows that all derivatives need to be perpendicular to the vector itself ∂ηj

m ·m = 0.
In this case, a second quantity, called viscosity tensor Dij [η], is defined together with
a generalised force containing an effective field depending on the new coordinates δE

δηi
.

The total LLG equation or Thiele equation is given by:

Gij [η]η̇j = γ
δE

δηi
+ αDij [η]η̇j . (3.13)

The index j denotes the collective coordinate j while there is a summation over all
collective coordinates i.
The conjugated momenta can be determined using the spin Berry phase of the action.
It is a geometrical phase term appearing because of the precession of the magnetisation
[36]. It contributes to the action E of the system as a kinetic energy term E =
EB −

∫
HdV . The spin Berry phase can be defined by the area enclosed by the

precession A multiplied by the change of the magnetisation EB =
∫
dtA · ṁ. The

dimensionality of the action is the same as the one of the spin Berry phase since it is
a part of it: EB ∼

∫
dtp · q̇. The canonical variables can be determined by comparing

both definitions to get ηi = qi and
∫
dVA · ∂ηi

m = pi. The generalised coordinates
are given by the collective coordinates and the generalised momenta depend on the
Berry phase contribution arising from the magnetisation vectors. The general Poisson
bracket for the collective coordinates in the phase space of (q,p) is defined by:

{ηi,ηj} =
∑
k

(
∂ηi
∂qk

∂ηj
∂pk
− ∂ηi
∂pk

∂ηj
∂qk

)
. (3.14)

The spatial derivative of pi is needed to determine this structure. It is given by
∂ηj
pi = Gij [η] [36]. The derivative of the collective coordinates with respect to the
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newly defined momentum can be solved using the gyrotropic tensor ∂ηi
∂pk

= (∂pk∂ηi
)−1 =

G−1
ki = −G−1

ik . In this case, the general Poisson bracket of two collective coordinates
in the (q,p) space is:

{ηi,ηj} =
∑
k

(
∂ηi
∂ηk

∂ηj
∂pk
− ∂ηi
∂ηk

∂ηj
∂qk

)
=
∑
k

(
δik

∂ηj
∂pk
− δjk

∂ηi
∂pk

)
=
∑
k

(
δikG

−1
kj − δjkG

−1
ki

)
= G−1

ij −G
−1
ji = 2G−1

ij .
(3.15)

The derivative of the collective coordinate j with respect to the coordinate i can only
be unequal to zero if the indices are the same.
In the case of the collective coordinates ηi = X and ηj = Φ, G−1

XΦ needs to be
determined:

{X,Φ} = 2G−1
X,Φ = 2(

∫
dVm · (∂Xm× ∂Φm))−1 = −2(

∫
dVm · (∂m× (n̂×m)))−1

= −2(

∫
dVm · (n̂(∂m ·m)−m(∂m · n̂)))−1

= 2(

∫
dVm · (m(∂m · n̂)))−1 = 2(n̂ ·

∫
dV ∂m)−1 = ±2/2 = ±1

(3.16)

The Poisson bracket {X,Φ} of the two collective coordinates X and Φ is a particular
case of the relation (3.15) for one set of coordinates given by just two soft modes.
These two modes describe the total domain wall behaviour for small currents. The
inverse of the gyrotropic tensor G−1

X,Φ is determined using the ansatz:

dm(x) = −dX∂m(x)± dΦn̂×m(x) (3.17)

for the change of the magnetisation with respect to the two coordinates. Both soft
modes span a plane of solutions orthogonally to m as in the ansatz (3.3) for the do-
main wall width determination. The dm denotes a spatial change of m. The dX and
dΦ denote the change of the two soft modes. The change concerning the angle Φ is
perpendicular to the magnetisation itself and n̂, a vector pointing along the nanowire.
This ensures a rotation of the rigid wall around the wire. The change of the middle
of the domain wall dX is antiparallel to the spatial derivative of m. In this case, the
domain wall moves intuitively because the magnetisation changes towards the end of
the domain wall when moving in the front direction.
Using such an ansatz, the derivative with respect to X translates into the ∂m term
while the ∂Φ derivative is leads to the n̂×m contribution straight from the variation
definition itself.
After the insertion of both into the gyrotropic tensor, the bac-cab rule (A.1) can be
used to rewrite the double cross product. The first term vanishes because ∂m ·m = 0
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due to the constant length constraint of m. In the second term, the n̂ points along
the nanowire direction independently of the integration and can be pulled out of the
integration. Also, a m2 = 1 term appears, meaning that the remaining term to be
integrated is given by ∂m. However, the integration of a derivative reduces to the
boundary values of the expression itself, in this case, the magnetisation m.
The magnetisation can have two different values, pointing along the nanowire or an-
tiparallel, whereas the nanowire direction vector is defined according to the wire direc-
tion. Both point in the x direction with a normalised magnitude. Depending on the
domain wall type, there are two cases for magnetisation. The first one is a tail-to-tail
domain wall with a magnetisation of −1 at −∞ and +1 at +∞. In this case, the
total integral is 1 · (1 − (−1)) = 2. The second case is a head-to-head domain wall
where the magnetisation is pointing towards each other. In this case, the integral is
1 · (−1− (+1)) = −2.
Inserting both cases into the Poisson bracket determination, distinguishing the two
domain wall types with a ± sign shows {X,Φ} = 2(±2)−1 = ±1. This change of sign
from tail-to-tail domain wall + to head-to-head domain wall − is essential when the
Hamiltonian equations for X and Φ in the domain wall system are determined.
The magnetic energy of the system E depends on the Hamiltonian H of the system.
H includes all interactions considered to be impactful to the time evolution of the
system. These contributions are given by the exchange interaction, the anisotropic
interaction and they could include DMI. Since the Hamiltonian is time independent
because the interactions do not change with time, the change of the total magnetic
energy is given by:

Ė =

∫
dV Ḣ =

∫
dV

δH

δm
· ṁ =

∫
dVHeff · ṁ

= ν∂XE −
1

γ

∫
dV (αṁ+ βν∂m)(ṁ+ ν∂m).

(3.18)

The LLG equation (2.7) can be inserted for the ṁ. The latter is linked and adapted to
the second line in the equation (C.1). The first term is the non-dissipative contribution
to the change of the total magnetic energy, whereas the integral term depends linearly
on both damping constants α and β. Higher order contributions are negligible since
the damping constants are much smaller than one.
In the case of no damping, α = β = 0, the corresponding Hamiltonian equation of
motion is given by:

Ė = {E,Hm} = ν∂XE (3.19)

with an effective Hamiltonian Hm(X,Φ) describing the time evolution. The energy of
the system is increases over time when a current is applied. Also, without a current it
should not change and the effective Hamiltonian should be given by the Hamiltonian H
containing the relevant interactions of the nanowire system. An effective Hamiltonian
of Hm = E(X,Φ)± νΦ fulfills such a requirement, which is shown in equation (C.2).
Using this information, the Hamiltonian equations for the collective coordinates are
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given by:

Ẋ = {X,Hm}+ ΩX = ±∂ΦHm + ΩX

Φ̇ = {Φ, Hm}+ ΩΦ = ±∂XHm + ΩΦ.

(3.20)

Those two equations determine the domain wall movement along the nanowire
studied as a rigid object. If damping is included, the Hamiltonian equations have a
non-vanishing damping factor Ωi which can be determined using the second term of
the equation (3.18). The Poisson brackets reform to the partial derivatives combined
with a ± sign depending on the type of the domain wall because of {X,Φ} = ±1 and
Hm(X,Φ). Inserting Hm and neglecting the damping term leads to Ẋ ∼ ±∂ΦE + ν.
The domain wall follows the spin-polarised current independently of the domain wall
type.
This formalism can be used to simulate and analyse domain wall behaviour at low
energy levels and can be pursued to more complex systems such as skyrmions [15]
and antiferromagnetic material [48]. In antiferromagnetic material, the formalism
can be described for two sets of ferromagnetic coordinates when the antiferromagnet
is treated as a combination of two ferromagnetic sublattices. Each ferromagnetic
sublattice occupies one domain wall. One of them is a head-to-head domain wall and
the other is a tail-to-tail domain wall to ensure zero net magnetisation.
Here, the collective coordinates can be described by combining the sublattice domain
wall position X = (X1 + X2)/2 as the centre and Φ = Φ2 − Φ1 denoting the
angle between the magnetisation vectors at the centre. The magnetisation of the
domain wall can be described by (X1 + X2)/2. In all three definitions, the indices
1 and 2 denote the sublattice one and two. The formalism extends to an effective
Hamiltonian in terms of all four collective coordinates. Likewise, it extends to
Hamiltonian equations for the combined coordinates having the same structure as the
equation (3.20). The antiferromagnetic formalism represented in this way is shown
more accurately in the scientific paper of Rodrigues et al. [37].
In conclusion, the width and profile of one-dimensional nanowire system domain walls
were derived in the previous section, acknowledging both cases with and without
applied spin current. However, the dynamics of such a system can only be directly
described by the LLG equation. The collective coordinate approach was used to
reduce the number of degrees of freedom to just two variables. The time evolution of
those two soft modes have been derived. The influence of an external spin-polarised
current has been analysed concerning the energy of the magnetic system and the
movement of the domain wall. It was important to see that such a spin-polarised
current can move a domain wall and that an application to a system like a racetrack
memory system is possible.
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3.4. Domain wall shedding

So far, the structure and dynamics of ferromagnetic domain walls have been analysed.
Next, the domain wall creation is needed to make an application in racetrack memory
systems possible. In this section, a spin-polarised current will be applied along with a
semi-infinitely long one-dimensional nanowire system with a pinning at the origin and
an easy axis anisotropy as shown in figure 3.2. A current value beyond which domain
walls will start to detach from the pinning point and move along the wire is calculated
based on the scientific reports of Sitte et al. [39] and Rodrigues et al. [38]. Also, as
is the domain wall profile with current based on the calculations of Rodrigues et al.
[38]. This procedure was not applied in the domain wall profile chapter, since there
would have been a need to calculate the required steps twice.
The detaching, creation or shedding of domain walls is the third major step of a domain
wall description. At first, the width and profile without current were determined.
After that, the movement of a domain wall as a rigid object was analysed. A method
of controlled creation at some point of the wire is needed to write new data in a
racetrack memory system by creating domain walls after a particular time or distance.
The procedure of the domain wall creation and the system’s setup is shown in figure
3.2. A one-dimensional semi-infinitely long nanowire with an easy axis anisotropy
along the x-axis is modified by pinning of the magnetisation along the z-axis where
m(x = 0) = ẑ. Such pinning can be achieved trough an external magnetic field or
some inhomogeneity in the material itself. The case of no spin current applied is
shown at the top of figure 3.2. The magnetisation rotates from the z direction to the
x direction or the negative x direction in the x − z plane as the anisotropy favours
both states equally.
When a sufficiently small spin-polarised current is applied, the magnetisation will start
to twist out of plane and acquires a y component. This twisting is amplified by the
DMI favouring chiral states and is shown in the middle of the plot. At the bottom, a
situation with a current greater than the critical current value is displayed. Not only
does the magnetisation twist off, but a domain wall starts travelling along the wire
direction. This is called shedding of the domain wall or domain wall creation by a
spin-polarised current.
In the formalism of this chapter, the LLG equation with spin-transfer torque (2.7) is

used to describe the magnetisation dynamics. Since it is a equation depending both
on time and spatial derivatives, a symmetry analyses based on the Noether theorem
[3] is used to adapt the equation. However, before the LLG equation is fully usable
the effective field needs to be calculated. This is done by a functional derivative of
the total magnetic energy E with respect to the magnetisation change:

δE

δm
=

δ

δm

∫
dV (A(∂m̃)2 +Dm̃ · (x̂× ∂m̃) + λ(1−m′2x )). (3.21)
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3. Ferromagnetic domain wall description

Figure 3.2.: The figure shows the semi-infinitely long nanowire along the x direction
with a pinned magnetisation along the z direction at the origin. At the
top, no current is applied and the magnetisation is fully in the x − z
plane. In the middle, a spin-polarised current below the critical current
value is applied along the wire direction, leading to an m twisting out of
the x − z plane. Above the critical value, a domain wall starts to travel
along the wire, as shown at the bottom. j denotes the spin-polarised
current. Source: Sitte et al. 2015: [39]

Each term can be calculated individually because of the integrals linearity, starting
with the exchange interaction:

δE

δm
∼ δ

δm

∫
dV A(∂m̃)2 =

∫
dV

δ

δm
A(∂m̃)2 = 2A

∫
dV ∂m̃(

δ

δm
∂m̃)

= 2A

∫
dV ∂m̃(∂

δm̃

δm
) = −2A

∫
dV ∂2m̃

δm̃

δm

= −2A

∫
dV ∂2m̃δ(m− m̃) = −2A∂2m

(3.22)

At the start of the calculation, the functional derivative is moved into the integral.
After that, the chain rule of differentiation is applied leading to two similar terms.
Then, a partial integration of the ∂ δm̃δm term is needed because the spatial derivative
of the functional derivative is ambiguous. Since there is no magnetisation change at
the ground state of the nanowire the partial derivative of m is zero at the integration
boundaries where domain walls are not located. The definition of a functional deriva-
tive to the vector itself δm̃δm = δ(m−m̃) is given by a delta function that vanishes when
the functional derivative is evaluated at the same point m. Therefore, the integration
over the nanowire volume is cancelled with this delta function, leading to the result
of −2A∂2m.
The second term is the Dzyaloshinskii-Moriya interaction with a constant strength
D. The prefactor is no tensor as the system is one-dimensional. The calculation can
be done using the epsilon tensor εijk to rewrite the cross product. Therefore, a more
general ansatz will be calculated using the DMI term with ∇ instead of ∂, substituting
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3. Ferromagnetic domain wall description

it back afterwards.

δE

δm
∼ δ

δm

∫
dV Dm̃ · (∇× m̃) = D

∫
dV

δ

δm
(m̃ · (∇× m̃))

= D

∫
dV

δ

δmi
εijkm̃i∂jm̃k = D

∫
dV εijk(

δm̃i

δmi
(∂jm̃k) + m̃i

δ

δmi
(∂jm̃k))

= D

∫
dV εijk(

δm̃i

δmi
(∂jm̃k)− ∂jm̃i

δm̃k

δmi
)

= D

∫
dV εijk

δm̃i

δmi
(∂jm̃k) + εkji

δm̃i

δmi
(∂jm̃k)

= 2D

∫
dV∇× m̃δ(m̃−m) = 2D∇×m

(3.23)

At first, the functional derivative is moved into the integral. Then, the term is ad-
justed using the epsilon tensor. The functional derivates dimension is the same as
the dimension of the DMI term, denoted by the subscript i. The product rule of
differentiation yields two terms. The second one of these terms is edited by a partial
integration in the third line due to the ambiguous derivative of ∂jm̃k. In the fourth
line, the index of the second epsilon tensor is rotated anti cyclic, which corresponds
to adding a minus sign. This shows that both terms show the same derivatives in the
same dimension.
Therefore, a factor of two arises in the last line when the terms are adjusted to the
vectorial notation. The delta function can be resolved, yielding a 2D∇×m term. In
the case of a one-dimensional nanowire, this term is reduced to 2Dx̂× ∂m.
The third contributing interaction is given by the anisotropic interaction favouring
spin states in the x-axis. The corresponding functional derivative can be calculated
in the following way:

δE

δm
∼ δ

δm

∫
dV λ(1− m̃2

x) = λ

∫
dV

δ

δm
(1− m̃2

x)

= λ

∫
dV

δ

δm
(1− (x̂ · m̃)2) = −2λ

∫
dV (x̂ · m̃)

δm̃

δm
x̂

= −2λ

∫
dV (x̂ · m̃)x̂δ(m̃−m) = −2λ(x̂ ·m)x̂ = −2λmxx̂.

(3.24)

The functional derivative is moved into the integral, as in the previous cases. Then,
the m̃x term is edited into a scalar product of m̃ with the x-axis unity vector. After
that, the chain rule is applied. A factor of two arises from the squared term. The
derivative of x̂ with respect to m is zero. Hence, the functional derivative of m
resolves into a delta function, which cancels the integral term. It is important to note
that this derivative is unequal to zero only in the x direction, since mx is the only
coordinate contributing. The resulting segment is given by −2λmxx̂.
The three terms added up express the total effective field of the one dimensional
nanowire system of a ferromagnet. This is given by:

δE

δm
= −2A∂2m+ 2Dx̂× ∂m− 2λmxx̂. (3.25)
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3. Ferromagnetic domain wall description

The magnetisation will evolve around this direction according to the LLG equation
(2.7):

ṁ = γm×(−2A∂2m+2Dx̂×∂m−2λmxx̂)+αm×ṁ−ν∂m+βm×ν∂m. (3.26)

Figure 3.2 displays the three stages expected to happen in the nanowire system with
added pinning. When no current is applied, the magnetisation will twist as a 90 degree
domain wall with a width whose magnitude depends on the exchange interaction and
the anisotropic strength (3.9). The current will twist off the magnetisation at the
pinning for small currents since it is perpendicular to the magnetisation at this point.
However, this configuration is still a static one. A movement in the system starts when
the current is stronger than a certain critical value. That is why the critical current
value can be determined by a calculation based on the static state with ṁ = 0.
The LLG equation reduces to:

0 = γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m. (3.27)

The Noether theorem states that ”every continuous symmetry of a system entails a
conservation law” (Altland and Simons 2010 [3]). The static nanowire system has two
of these symmetries that can be used. A translation of the nanowire along the x-axis
does not change the magnetic energy of the system. Since the wire is semi-infinitely
long the origin of the system is chosen to be at x = 0, but it could take any other value
as well. This symmetry implies that the linear magnetic momentum is a conserved
quantity.
Also, a similar consideration can be taken into account for the conserved quantity of
the angular momentum. A rotation of the system around the x-axis may change the
angle of a magnetisation structure to one of the other two axes. However, energetically
an angle does not change the free energy. The Noether theorem states that a rotation
invariance around the x-axis entails the conservation of the total angular momentum
around that axis in terms of magnetisation. Both of these conservation laws are valid
as long as there is no non-conservative torque present [38]. Mathematically, the two
conservation laws can be shown by multiplying the static LLG equation by x̂ and
m× ∂m.
The first case dealt with is the x̂ one.

0 = x̂ ·
[
γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m

]
(3.28)

Since a longer calculation is needed, it is shown in the appendix up to equation (D.2).
The resulting equation with dissipation (β 6= 0) is given by:

∂

(
2Ax̂ · (m× ∂m) +D(mx +

ν

2Dγ
)2

)
=
βν

γ
x̂ · (m× ∂m). (3.29)

In the second case, the static LLG is multiplied by m× ∂m:

0 = (m×∂m) ·
[
γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m

]
.
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3. Ferromagnetic domain wall description

(3.30)

As in the first case, the calculation is described in the appendix up to equation (D.1)
and shown in the following:

∂
(
A(∂m)2 + λm2

x

)
=
βν

γ
(∂m)2. (3.31)

The non-dissipative time evolution of the system is justifiable for the same reason
as the static case treatment. In the vicinity of the critical current, the creation and
movement of domain walls are just starting. This means that the movement is slow
and can be treated adiabatically or in other words without energy loss or dissipation.
In this case, the damping constants α and β are negligible.

∂
(

2Ax̂ · (m× ∂m) +D(mx + ν
2Dγ )2

)
= 0 and ∂

(
A(∂m)2 + λm2

x

)
= 0

In both terms, the derivatives of the quantities inside the bracket are equal to zero.
Hence, these quantities have to be constant. This shows that both the linear mo-
mentum along the x direction and the total angular momentum along the x direction
are conserved. Those constant values are compared for two special cases where the
magnetisation is unambiguous. At x = 0, the magnetisation points explicitly along
the m = ẑ direction. At x → ∞, there is no change in the magnetisation ∂m = 0
because the magnetisation will point along the anisotropic direction m = x̂ as it is
the ground state of the system.
On the one hand, combining both equal constant values in the case of the angular
momentum leads to:

−∂my|x=0 =
D

2A
± ν

2Aγ
. (3.32)

This is shown in the appendix in the equation (D.3). On the other hand, the same
approach used for the linear momentum equation leads to:

(∂m)2|x=0 =
λ

A
. (3.33)

This calculation is shown in the equation (D.4).
The partial derivative of the magnetisation at the pinning point is orthogonal to the z-
axis (∂m)2

x=0 = (∂mx)2
x=0 +(∂my)

2
x=0 because of the constant length constraint of the

magnetisation. Also, the squared change of the magnetisation has to be greater than
zero 0 < (∂mx)2

x=0. The equation for the total angular momentum can be inserted
into the linear momentum equation to get a solution of the current independently of
the magnetisation.

0 < (∂mx)2
x=0 =

λ

A
− (∂my)

2
x=0 =

λ

A
−
(
D

2A
± ν

2Aγ

)2

(3.34)
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This implies that the system stays static as long as
(
ν
γ ±D

)2
< 4λA is fulfilled. The

system gets unstable above a critical spin-polarised current density of:

νC = γ(2
√
λA∓D). (3.35)

In the case of no DMI, the critical current is independent of the type of the domain
wall. With DMI, the current needed is larger for head-to-head domain walls (+1) than
in the tail-to-tail case (−1). Hence, the domain walls will start to move at different
strengths of the applied spin-polarised current having a different velocity at the same
value.
On the one hand, the DMI can lower the requirement needed to create a domain
wall in the one-dimensional semi-infinitely long nanowire. Therefore, a crystal with
no inversion symmetry, having a DMI contribution, can be utilised to manufacture a
racetrack memory system with lower needs in power consumption because of the lower
critical current needed. Also, the problem of different speed domain wall types can be
overcome with a current strength in between γ(2

√
λA−D) and γ(2

√
λA+D) where

the shedding of head-to-head domain walls is possible, while the tail-to-tail domain
walls can not be created.
On the other hand, in the case of no current, the stability condition is given by
D2 < 4λA. If D2 has a greater value, the ferromagnetic state is no longer the ground
state, and a helical state will be energetically more favourable as a magnetisation
orientation. Then, in the spiral state, no domain wall creation is possible at all.
The current depends on both material parameters λ and A from the anisotropy and
exchange interaction by a square root. The anisotropy favours an easy axis alignment
of the magnetisation. Small currents can not overcome the energy barrier of λ to pull
the magnetisation out of the easy axis and create a domain wall. The same holds for
the exchange interaction strength. If the current is too weak, then it is energetically
favourable to stay parallel to each neighbour for the magnetic moments rather than
following the spin current direction. In comparison, very high currents will make the
system unstable, as shown in the next section. Therefore, it is justifiable that the
current does depend on both parameters.
This analysis of the shedding current can be compared to the ones calculated in the
paper of Rodrigues et al. [38] and Sitte et al. [39]. Both of those critical current
values share the same dependency on the interaction strength and the anisotropy
parameter. This value γ

√
2λA is different from the critical value calculated in this

thesis as 2γ
√
λA by a factor of

√
2. The difference is located by a different definition

of the interaction strength A. In both papers, the interaction strength is defined as
A
2 (∂m)2, while it is defined as A(∂m)2 here. A straight redefinition to the value A/2
shows that both results match. Also, the DMI strength dependency ±γD is the same
when comparing the value in the paper [38] and in this thesis.
The case of β 6= 0 can not be solved as elegantly as the non-dissipative calculation.
Having β 6= 0 means that the linear and total angular momentum along the x-axis
are not conserved anymore. A similar analysis is possible integrating over the total
space from 0 to ∞ using the equations with β. Integrating a derivative leads to the
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3. Ferromagnetic domain wall description

evaluation of the boundary conditions. The β term integrals will be defined as new
types of energy as was done in the reference calculation [38]. The angular momentum
equation results in:∫ ∞

0
dx∂

(
2Ax̂ · (m× ∂m) +D(mx +

ν

2Dγ
)2

)
=

∫ ∞
0

dx
βν

γ
x̂ · (m× ∂m)

=⇒ ∂my|x=0 +
D

2A
± ν

2Aγ
=

βν

2Aγ
Ehel.

(3.36)

On the left-hand side, the conserved angular momentum term is evaluated both at
infinity and zero where the zero term is substracted, as it is the starting value of the
integration. On the right-hand side, the integral of Ehel =

∫∞
0 dxx̂ · (m × ∂m) is

redefined as the helicity energy. That name is chosen because of the term in a DMI
form.
The linear momentum calculation is done similarly:∫ ∞

0
dx∂

(
A(∂m)2 + λm2

x

)
=

∫ ∞
0

dx
βν

γ
(∂m)2

=⇒ λ

A
− (∂m)2|x=0 =

βν

Aγ
Eexch

(3.37)

As above, the left side is evaluated at the boundaries of the system and the right side
is redefined to the exchange energy Eexch =

∫∞
0 dx(∂m)2 because it is an integration

of the exchange interaction term over the total system.
These equations can be combined using the same trick as in the β = 0 case by inserting
the ∂my|x=0 into the second equation. Also, (∂m)2 is used in the same way because
of the constant length assumption of the magnetisation vector m: 0 < (∂mx)2|x=0 =
λ
A −

βν
AγEexch. As a result, the following inequality depending on the spin-polarised

current ν holds for currents smaller than a critical value and does not hold for currents
above it.

0 <
λ

A
− (− D

2A
∓ ν

2Aγ
+

βν

2Aγ
Ehel)

2 − βν

Aγ
Eexch (3.38)

Next, the domain wall profile of the one-dimensional semi-infinitely long nanowire
system with pinning at the origin is determined below the critical current. In this
case, dissipation can be neglected β = 0 as it is a static configuration. The spatial
derivative of the magnetisation is defined in the same way as for the domain wall
profile without applied spin current (3.3): ∂m = Γ(x, t)x̂×m+ Λ(x, t)m× (x̂×m).
This ansatz is inserted into the static case equations:

∂
(

2Ax̂ · (m× ∂m) +D(mx + ν
2Dγ )2

)
= 0 and ∂

(
A(∂m)2 + λm2

x

)
= 0

The term (∂m)2 = (1 − m2
x)(Γ2 + Λ2) is determined in equation (B.1). The term

x̂ · (m× ∂m) can be determined using the bac− cab rule (A.1) and the cross product
properties to analyse the non-vanishing terms: x̂ · (m × ∂m) = x̂ · (Γ(x̂m2 −m(x̂ ·
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m)) + Λm× (x̂m2 −m(x̂ ·m))) = Γ(1−m2
x).

Then, the static state equations are:

∂

(
2AΓ(1−m2

x) +D(mx +
ν

2Dγ
)2

)
= 0 and ∂

(
A(1−m2

x)(Γ2 + Λ2) + λm2
x

)
= 0.

(3.39)

Again, the constant values of the conserved quantities will be compared to the exact
values at x → ∞. The constant value is different for a system with magnetisation
pointing towards the wire direction to an antiparallel one. At first the left equation

is considered, using
(

2AΓ(1−m2
x) +D(mx + ν

2Dγ )2
)
|x→∞ = D ± ν

γ + ( ν
2Dγ )2:

2AΓ(1−mx)(1 +mx) +Dm2
x +

ν

γ
mx + (

ν

2Dγ
)2 = D ± ν

γ
+ (

ν

2Dγ
)2

=⇒ (2AΓ +D)(1 +mx)(1−mx) +
ν

γ
(mx ∓ 1) = 0

=⇒ (2AΓ +D)(1±mx)∓ ν

γ
= 0

=⇒ Γ = ± ν

2Aγ(1±mx)
− D

2A
.

(3.40)

The magnetisation value at x→∞ can take both values mx = ±1 dependent on the
domain wall type. Starting from the pinning, the first domain wall created depends
on the magnetisation direction along the nanowire. If it is mx = −1, a head-to-head
domain wall will start to form, followed by a tail-to-tail domain wall. If mx = 1, the
first domain wall created is a tail-to-tail domain wall, followed by a head-to-head one.
Hence, the domain wall profile depends on the domain wall type and the top sign
indicates a starting magnetisation of mx = 1.
Since all terms have a squared dependency on mx the right equation does not depend
on the magnetisation directly. At x → ∞, a simple λ is the only contribution. A
comparison to the equation for any point results in:

A(1−m2
x)(Γ2 + Λ2) + λm2

x = λ

=⇒ (A(Γ2 + Λ2)− λ)m2
x = 0

=⇒ Γ2 + Λ2 =
λ

A
.

(3.41)

As a next step, the Γ of equation (3.40) is inserted into the second equation as well
as equation (B.2):(

± ν

2Aγ(1±mx)
− D

2A

)2

+

(
∂mx

1−m2
x

)2

=
λ

A
. (3.42)

Then, the domain wall profile up to a point x̃ can be determined by an integration
from ∞ to x̃ as well as an integration from 0 to mx̃ by a separation of variables of the
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term (∂mx)2:

x̃ =

∫ mx̃

0
dmx

1

(1−m2
x)

√
λ
A −

(
± ν

2Aγ(1±mx) −
D
2A

)2
. (3.43)

This equation can be used to determine the profile of m below the critical current.
As a conclusion of the section, the ferromagnetic LLG equation with an applied spin-
polarised current along the nanowire direction was analysed for a semi-infinitely long
nanowire with an easy axis anisotropy, an exchange interaction and DMI and pinning
orthogonal to the anisotropy at the origin. At first, the effective field of the ferromag-
net was calculated to be able to work with the LLG equation analytically. After that,
the symmetries of the system given by a rotational invariance around the x-axis and
invariance under displacement along the x-axis were used with the Noether theorem
to confirm two conserved quantities.
These quantities could be analysed in a static state without dissipation to calculate a
critical current value beyond which domain wall shedding is possible at the pinning.
Also, the case of dissipation was addressed. Then, the magnetic profile of the system
below the critical current could be constructed.

3.5. Ferromagnetic instability

The critical current calculated for a domain wall creation in the last section needs to
be scrutinised in terms of the stability of the ferromagnetic state in the total system.
A spin-polarised current is a destabilising factor when applied to a perturbation of the
ground state. The ferromagnetic state is not stable beyond a critical current value.
However, it is questionable if the shedding current is lower or higher than the stability
current. That is why the latter condition is examined in this chapter. This analysis
is based on the scientific paper of Masell et al. [32].
The LLG equation with applied spin-transfer torque (2.7) with the given functional
derivative term (3.25) is used to describe a ferromagnetic nanowire state. The DMI
contribution will be neglected in this calculation for simplification. A perturbation
of this equation is investigated and a condition beyond which the state itself is not
stable will be extracted from the dispersion relation emerging in this formalism. The
LLG equation and the effective field are analysed with an abstract current direction
ν. The spatial derivatives in the equations are given by gradients of the magnetisation
instead. This will not complicate the formalism but generalise the result.
The instability will be determined using the magnetisation in the ground state of the
ferromagnetic system m0 = x̂ with a perpendicular perturbation h = (0, hy, hz)

T .
Therefore, the total magnetic state is modelled as m = (1, hy, hz)

T . This ansatz is
inserted into the LLG equation, neglecting all second-order and higher perturbations
as they are small in magnitude. Neglecting those terms leads to a linearised LLG
equation which is simpler and introduces an analytically solvable problem.
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The linear equation is given by:

h− αx̂× h = −(ν · ∇)h+ (−2Aγ∇2 + 2λγ + β(ν · ∇))x̂× h. (3.44)

The spatial and time derivatives of the x component of the magnetisation vanishes
due to the orthogonal perturbation. Hence, the derivative terms must be in the form
of x̂×∇h to fulfil the linearity. This leads to the equation shown above.
Next, the magnetisation exposed to the spin-polarised current is modelled as a par-
ticular spin wave solution. All possible solutions are given by magnetisation vectors
capable of rotating on a sphere around the vector origin. The specific case of a group
of spin waves having different angular frequencies ωi is the plane wave solution with
just one frequency ω. This plane wave solution with an amplitude ρi for each of the
coordinates rotates as h = ρ exp (i(ωt− q · r)). The time derivative of a plane wave
solution transforms to ∂t exp (i(ωt− q · r)) = iω exp (i(ωt− q · r)) and the spatial
derivative results in ∇ exp (i(ωt− q · r)) = −iq exp (i(ωt− q · r)). The equation with
the ansatz inserted is shown below:

iωh− iωαx̂× h = i(ν · q)h+ (2Aγq2 + 2λγ + iβ(ν · q))h× h. (3.45)

The amplitudes ρi of the perturbation do not need to be identical in the y and z
direction. Therefore, it is convenient to display this formula in a matrix form. The
x̂× h contributions are the off-diagonal elements of the matrix and the h dependent
terms build the diagonal elements. Each term will be determined individually.
At first, the effective field term is converted using x̂× h = (0,−hz, hy)T :

(−2Aγ∇2 + 2λγ)x̂× h = 2γ(Aq2 + λ)x̂× h

=

0 0 0
0 0 −2γ(Aq2 + λ)
0 2γ(Aq2 + λ) 0

h =

0 0 0
0 0 −Λ
0 Λ 0

h. (3.46)

The Gilbert damping term is given by:

αm× ṁ = αiωx̂× h =

0 0 0
0 0 −αiω
0 αiω 0

h. (3.47)

The adiabatic spin-transfer torque term is given by:

−(ν · ∇)m = i(ν · q)h =

i(ν · q) 0 0
0 i(ν · q) 0
0 0 0

h. (3.48)

The non-adiabatic spin-transfer torque term or β dependent term is given by:

βm× (ν · ∇)m = −iβ(ν · q)x̂× h =

0 0 0
0 0 −iβ(ν · q)
0 iβ(ν · q) 0

h. (3.49)
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Therefore, the total LLG equation assembles to:

0 =

0 0 0
0 i(ν · q)− iω −Λ− αiω + iβ(ν · q)
0 Λ + αiω − iβ(ν · q) i(ν · q)− iω

h. (3.50)

This formalism is based on the three-dimensional magnetisation vector, but the per-
turbation depends on the y and z coordinates only. The x direction does not contribute
to the dynamics of the perturbation and equals zero in both sides of the equation.
That is why the three dimensional matrix above can be reduced to a two dimensional
one without changing the behaviour.

0 =

(
i(ν · q)− iω −Λ− αiω + iβ(ν · q)

Λ + αiω − iβ(ν · q) i(ν · q)− iω

)
h (3.51)

As previously mentioned, the amplitudes of the perturbation ρi in the y and z direction
do not need to be equal. The two equations from the y and the z components are
linearly independent, meaning that the solution does not depend on the perturbation
amplitudes if the determinant of the matrix vanishes.

0 = (−iω + i(ν · q))2 + (Λ + αiω − iβ(ν · q))2 (3.52)

The two dimensional determinant can be recast in terms of the frequency of the spin
wave ω:

0 = (1+α2)ω2−2((ν ·q)+iΛα+αβ(ν ·q))ω+(1+β2)(ν ·q)2−Λ2+2iβ(ν ·q)Λ. (3.53)

This quadratic equation can be solved by the ”pq”-formula, which leads to the two
solutions:

(1 + α2)ω1/2 = (1 + αβ)(ν · q) + iΛα± i(α− β)(ν · q) + Λ). (3.54)

The calculation of this quantity is shown in the appendix up to the equation (E.6).
On the one hand, the spin waves proportional to exp (i(ωt− q · r)) become unstable
if the dispersion relation ω1/2 has a negative imaginary part. This means that the
exponential function has a contribution exp (−i2|Im(ω)|t) = exp (|Im(ω)|t) directly
proportional to the magnitude of the imaginary part of the dispersion relation. Hence,
the perturbation itself increase exponentially in time. On the other hand, the spin
waves are damped exponentially in time for a positive imaginary part of the dispersion
relation. A critical value of an applied spin-polarised current can be determined at
the boundary between both cases.

Im(ω1/2) =
αΛ± (α− β)(ν · q)

(1 + α2)
=
α(Λ± (u · q))

(1 + α2)
=
α(2γ(Aq2 + λ)± (u · q))

(1 + α2)

(3.55)
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3. Ferromagnetic domain wall description

In the second step, the spin-polarised current is redefined to u = α−β
α to get a α and

β independent calculation. As already mentioned, the imaginary part should be lower
than zero to get an unstable state solution:

Im(ω1/2) =
α(2γ(Aq2 + λ)± (u · q))

(1 + α2)
< 0. (3.56)

Since α is positive, this factor is not relevant.

2Aγq2 + κ± (u · q) = (2Aγq ± u)2 + 2γλ− u2

4Aγ
< 0 (3.57)

The q2 term is combined with the (u ·q) contribution, using the binomial theorem, to
get a squared momentum contribution that can not be lower than zero. This means
that the momentum independent solution only depends on 2γλ− u2

4Aγ < 0.

2γλ− u2

4Aγ
< 0 ⇐⇒ 2γλ <

u2

4Aγ
⇐⇒ |u| > 2γ

√
2Aλ (3.58)

The critical current value of the one-dimensional ferromagnetic nanowire system is
given by |uc| = 2γ

√
2Aλ. This marks the boundary above which the ferromagnetic

state is not stable anymore. This value can be compared to the critical current (3.35)
of domain wall creation in the semi-infinitely long one-dimensional nanowire system
with orthogonal pinning to the easy axis at the origin. Besides the pinning point,
both systems share the same properties. The ferromagnetic state critical current
value determined in this chapter has a crucial impact on the similarly built nanowire’s
stability for shedding.
Both values can be compared to each other in the case of β = 0, the non-dissipative
case. On that note, u and ν are equal due to the cancelling α terms. Comparing
both values shows that the ferromagnetic instability is greater than the shedding
current by a factor of

√
2, neglecting the DMI contribution. This indicates that

a domain wall creation in such a nanowire system is possible for ferromagnetic systems.

3.6. Summary of the ferromagnetic calculations

The previous chapter was dedicated to the ferromagnetic description of domain wall
systems and a possible application using such systems. At first, the racetrack memory
system was introduced as a new method of digital information storage. Then, the
profile of domain walls in a one-dimensional ferromagnetic nanowire system had been
determined neglecting the spin current contributions. It is shown that the domain
wall width is characterised by an interplay between exchange interaction strength and
the anisotropic interaction strength.
A rigid body treatment for one-dimensional domain walls was discussed in the follow-
ing section. The domain wall profile can be treated as a stable structure moving along
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3. Ferromagnetic domain wall description

the wire using the coordinate of the domain wall centre and the rotation of the domain
wall with respect to an axis. The time evolution of these generalised coordinates, also
called soft modes, showed that such a description was possible. Furthermore, a gen-
eralisation is achievable for antiferromagnetic systems.
The subsequent section did focus on the creation of domain walls in one-dimensional
systems. Therefore, pinning of the magnetisation was used with an applied spin-
polarised current along the wire direction. In this case, the symmetries of the system
could be used for the Noether theorem. The linear momentum and the total angular
momentum along the x-axis are conserved. In the non-dissipative case of β = 0, an
analytical solution for the spin current value needed to achieve a domain wall creation
or shedding off the pinning point could be determined. This current value is different
for the two domain wall types, head-to-head or tail-to-tail, with DMI. The current
depends on the exchange interaction strength as well as the anisotropic interaction
strength. Also, the domain wall profile was determined in the case of an applied spin-
polarised current.
In the last section of the chapter, the stability of the ferromagnetic state itself was
tested. A current value beyond which the ferromagnetic state does no longer exist was
determined using a perturbative approach for the linearised LLG equation. The cal-
culation explained that this critical current value is higher than the shedding current
value. It proves that domain wall creation based on spin-transfer torque at a pinning
point is possible for a ferromagnetic system.
In the next chapter, an antiferromagnetic theory is built to determine a critical current
value for the domain wall shedding in one-dimensional systems.
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4. Antiferromagnetic domain wall
description

Up to this point of the thesis, domain wall properties have been derived for one-
dimensional ferromagnetic nanowire systems. In this chapter, the ferromagnetic basis
is used to develop a theory for synthetic antiferromagnetic systems. A net magnetisa-
tion of about zero characterises antiferromagnetic systems. This implies that neigh-
bouring magnetic moments favour an alignment so that this requirement is fulfilled.
The most straightforward geometry for such systems is determined by antiparallel
neighbouring magnetic moments. In an Ising model type, the exchange interaction
term strength A has a negative value instead of a positive one. This penalises the
parallel alignment of the adjoining neighbours.
The chapter is structured in three steps. At first, LLG type equations for the antifer-
romagnetic system are derived based on the ferromagnetic ones. A particular focus is
put on the effective field terms. After that, those equations will be used to derive an
antiferromagnetic critical current for the shedding of domain walls in the same struc-
ture as was done in the ferromagnetic case. In the last section, the determination of
the antiferromagnetic instability current is performed and both values are compared.

4.1. The antiferromagnetic LLG equations

The ferromagnetic LLG equation with an applied spin-polarised current (2.7) describes
the time evolution of the ferromagnetic state magnetisation. The antiferromagnetic
system needs to be treated differently, as it has zero net magnetisation. The system
model is one of a synthetic antiferromagnet, a specific case of an antiferromagnet. It
is fabricated by two oppositely magnetised ferromagnetic layers, combined by a non-
magnetic layer whose thickness is the controlling factor for the interaction between
both layers [35]. Those layers will be called sublattices or lattices of the system.
A sketch of a synthetic antiferromagnetic domain wall is shown in figure 4.1, where
the lattices are visualised by the colours red and blue. The magnetisation vectors
are approximately antiparallel all the time, independently of the domain wall because
of the antiferromagnetic coupling strength. Mathematically, both layers are coupled
antiferromagnetically by an interlattice exchange interaction. This interaction is the
strongest one in the system and leads to both magnetisation vectors aligning antipar-
allel. The total magnetic energy of a one-dimensional synthetic antiferromagnetic
nanowire is modelled as the sum of both lattices total magnetic energy terms and the
interaction strength between the lattices.

As previously mentioned, the nearest neighbours of each sublattice, coupled by
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4. Antiferromagnetic domain wall description

Figure 4.1.: Illustration of an antiferromagnetic domain wall in a one-dimensional syn-
thetic antiferromagnet consisting of two ferromagnetic sublattices - the
red and blue marked vectors - which are coupled by an interlattice ex-
change constant. The magnetisation vector of one of the sublattices is
antiparallel to the corresponding adjoining neighbour of the other lattice.
Therefore, there is no net magnetisation with or without a domain wall
in the antiferromagnetic system. Source: Author’s illustration.

an interaction favouring antiparallel alignment, have a combined net magnetisation
|m1 +m2| = 0 in the antiferromagnetic state for the sublattice labels 1 and 2. That
quantity applies to all pairs, leading to a vanishing magnetisation of the total sample.
Hence, an experimental analysis of the magnetisation is not possible.
Both spin values subtracted can be used as an indicator of the magnetisation change
within the sample. However, the choice of the direction of this vector is ambiguous.
(m1 −m2)/2 and (m2 −m1)/2 both have a magnitude in the order of the magneti-
sation of the sublattices, but they differ by a minus sign making them point in the
opposite directions. The antiferromagnetic theory is usually described in terms of two
new variables in the LLG equations [28] [6] [19].
The vector chosen to describe the behaviour of the synthetic antiferromagnet within
this thesis is n = (m1 −m2)/2, a subtraction of the bottom lattice magnetisation
vector from the top one. The resulting vector, called Néel vector n, points along the
direction of the top layer magnetisation and is normalised to the sublattice magneti-
sation magnitude. Therefore, the red arrows shown in figure 4.1 display what the
system would approximately look like in terms of the Néel vector, as the vector origin
would be between both sublattice vectors.
A more rigorous defining plot for the two relevant variables of the synthetic antifer-

romagnet m = (m1 +m2)/2 and n = (m1−m2)/2 is shown in figure 4.2. It displays
both values multiplied by a factor of two, so that the vector origin can be recognised.
Also, m1 and m2 are pulled towards the same direction to exhibit the direction of
the antiferromagnetic magnetisation vector m as well as the small magnitude. m is
zero in the case of no kink.
In the following, the total magnetic energy is determined. At first, the sublattice mag-
netic energies are modelled by the same interactions as in the ferromagnetic system
(3.2) with DMI contributions as shown below:

E1/2 =

∫
dV (A1/2(∂m1/2)2 +D1/2m1/2 · (x̂× ∂m1/2) + λ1/2(1−m2

1/2,x)). (4.1)
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4. Antiferromagnetic domain wall description

Figure 4.2.: The two relevant variables of the synthetic antiferromagnet m = (m1 +
m2)/2 and n = (m1−m2)/2 multiplied by a factor of 2 are displayed to
show how they relate to the sublattice magnetisation before the normali-
sation. The magnetisation vectorm is approximately zero throughout the
sample. The Néel vector n is used to describe the change of the sublattice
magnetisation vectors in the system. Source: Author’s illustration.

The interaction between both ferromagnetic parts is modelled as εm1 ·m2. The in-
teraction strength ε is defined positively. Hence, the term is minimised when both
sublattice vectors are antiparallel and maximised when they are parallel. This struc-
ture realises an antiferromagnetic behaviour of the model.
The combined term is given by:

Etot =

∫
dV [A1(∂m1)2 +D1m1 · (x̂× ∂m1) + λ1(1−m2

1,x)

+A2(∂m2)2 +D2m2 · (x̂× ∂m2) + λ2(1−m2
2,x) + εm1 ·m2].

(4.2)

For simplicity reasons, the leading constants given by the exchange interaction
strength A, the anisotropic strength λ and the DMI strength D are equal for both
lattices. This implies that both parts behave identically since they are similar. In
the next step, the definition of the antiferromagnetic vectors m = (m1 +m2)/2 and
n = (m1 −m2)/2 of the magnetisation and the Néel vector are inserted into the
equation (4.2) as m1 = m+ n and m2 = m− n.

ET =

∫
dV [A(∂(m+ n))2 +D(m+ n) · (x̂× ∂(m+ n)) + λ(1− (mx + nx)2)

+A(∂(m− n))2 +D(m− n) · (x̂× ∂(m− n))

+ λ(1− (mx − nx)2) + ε(m+ n) · (m− n)].

(4.3)

All interaction terms will be analysed separately, starting with the exchange inter-
action term A. Both square brackets are resolved and added up. The mixed terms
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4. Antiferromagnetic domain wall description

containing m and n cancel out while the pure terms appear twice. As a result, the
total exchange term is 2A(∂m)2 + 2A(∂n)2.
The DMI contribution is resolved in the next step: D(m + n) · (x̂ × ∂(m + n)) +
D(m−n) · (x̂× ∂(m−n)) = 2Dm · (x̂× ∂m) + 2Dn · (x̂× ∂n). Again, the mixing
terms vanish because of the minus sign in front of the Néel vector inserted for the
bottom magnetisation m2. Both m1 and m2 appear quadratically in the DMI energy
density. Therefore, all terms containing a single n emerge twice, once with a minus
sign from m2 and once without from the m1 definition. The quadratic terms in n
and m appear in both starting terms, leading to the final result.
The anisotropic term gives the last ferromagnetic contribution. Again, this segment
has a quadratic dependency on m1 or m2. This indicates that the same symmetry as
above can be applied to the anisotropy. The mixed terms cancel while the pure terms
and the constant term occur twice: 2λ(1−m2

x− n2
x). The antiferromagnetic coupling

term ε(m+n)·(m−n) = ε(m2−n2) is converted using the binomial rules. Therefore,
the total magnetic energy in terms of the new variables of the antiferromagnet is:

ET (m,n) =

∫
dV (2A(∂m)2 + 2Dm · (x̂× ∂m) + 2A(∂n)2

+ 2Dn · (x̂× ∂n) + 2λ(1−m2
x − n2

x) + ε(m2 − n2)).

(4.4)

This equation is the total magnetic energy of a one-dimensional synthetic antiferro-
magnetic nanowire modelled by two antiparallel ferromagnetic lattices, coupled anti-
ferromagnetically by a non-magnetic layer in between. It is important to note that
other contributions to the total magnetic energy, such as dipolar fields, are neglected,
as stated in the effective field section. Those interactions highly depend on the system
and its properties needed for future applications. Therefore, materials are manufac-
tured, obtaining the material parameters so that these approximations are justifiable.
The exchange interaction constant A of the ferromagnet is renamed as intralattice
exchange constant in the antiferromagnetic case. It is still the prefactor giving the
interaction strength magnitude to the exchange interaction, but it takes place between
neighbours of each of the sublattices independently from each other. The neighbour-
ing magnetic moments of each sublattice behave ferromagnetically, meaning that they
tend to align. That is why the constant A is positive, unlike a direct conversion of
an Ising model from a ferromagnetic behaviour to an antiferromagnetic one would
suggest.
The antiferromagnetic coupling introduces a second coupling of nearest neighbours.
It is between neighbours of the two lattices. Hence, the contribution with prefactor ε
is called the interlattice exchange constant. The interlattice exchange has the highest
contribution of interaction strengths to retain the antiferromagnetic state even in a
dynamic system.
Having stated that some interaction strengths are greater in magnitude than others
and some interaction strengths are even negligibly small, equation (4.4) can be fur-
ther analysed and some of its terms can be neglected. To do so, ferromagnetic and
antiferromagnetic constraints are set. At first, the ferromagnetic sublattices have a
saturated magnetisation magnitude normalised to a unit length |m1/2| = 1. As for the
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ferromagnetic calculations, it is assumed that below the Curie temperature - the tem-
perature beyond which ferromagnetic material gets paramagnetic - there is no change
in the magnitude of the magnetisation. This characteristic of the magnetisation shows
that the spatial change of m1/2 can only be perpendicular to the magnetisation itself
∂m1/2 ·m1/2 = 0. A similar structure can be built for the antiferromagnet using this
ferromagnetic constraint.
The definition of the antiferromagnetic magnetisation and Néel vector show interesting
behaviour based on the constant length constraint. Analogously to the Curie tempera-
ture, the length of the Néel vector |n| = n2 = ((m1−m2)/2)2 = ((2m1)/2)2 = m2

1 =
1 is constant in length below the Néel temperature, a temperature limit above which
the antiferromagnetic state is not antiferromagnetic anymore. Accurately, the mag-
netisation should be precisely zero, and hence the theory independent of it. However,
the magnetisation vector in an antiferromagnetic theory is treated as a perturbation.
Although the theory is based and calculated on the constant length constraint, this
will never hold in the total system evolving in time. That is why the magnetisa-
tion vector is used as a perturbative parameter much smaller than the Néel vector
|n| � |m|.
The antiferromagnetic vectors share two traits by definition. The first one is stated
by (n2 +m2) = m1

2−2m1·m2+m2
2

4 + m1
2+2m1·m2+m2

2

4 = m1
2+m2

2

2 = 2/2 = 1. The
magnetisation part is seen as an antiferromagnetic state perturbation and is used to
determine the dynamic properties of the state. The second trait is specified by the

orthogonality of both vectors by definition n·m = (m1+m2)
2 · (m1−m2)

2 = (m1
2−m2

2)
4 =

(m0
2−m0

2)
4 = 0. Often, this will be used to facilitate the equations.

As stated above, the antiferromagnetic constraints are used to estimate the significance
of all terms of the total magnetic energy density as shown below:

2A(∂m)2+2Dm·(x̂×∂m)+2A(∂n)2+2Dn·(x̂×∂n)+2λ(1−m2
x−n2

x)+ε(m2−n2).

(4.5)

The magnetisation term of the intralattice exchange interaction (∂m)2 will be tiny
as m is nearly zero and it should not change drastically in an antiferromagnet. In
comparison, the (∂n)2 term will not be neglected even though it shares the same
interaction parameter. The collinear magnetic moments tend to be antiparallel, but
the Néel vector can vary and rotate. For example, the usage of a spin-polarised cur-
rent perpendicular to the spin plane leads to both spins pointing along the current
direction due to the torque. The interlattice exchange interaction works as a restor-
ing force, keeping both sublattice moments antiparallel. Hence, the Néel vector will
rotate but remains approximately constant in its length. Also, |m| ≈ 0 still holds as
the main factor of the AFM lattice. Therefore, n acts as the antiferromagnetic order
parameter, describing the motion of antiferromagnetic structures.
The anisotropic term λ(1−m2

x−n2
x) will be changed by neglecting the m2

x term. Since
|m| is small, one of its coordinates is even smaller. In comparison, the Néel vector
contribution is kept to describe the anisotropic influence on the antiferromagnetic or-
der. Also, the constant factor of λ is kept to reach a vanishing free energy contribution
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in the ground state alignment of the sublattice magnetic moments.
The DMI is entirely neglected for a more straightforward calculation. The interaction
between both sublattices or interlattice exchange is the strongest of the three remain-
ing interactions. The antiferromagnetic ordering is the leading factor for the system’s
behaviour, as it would be a ferromagnet without it. This expresses the significance of
the interlattice exchange. The n part is neglected, as it remains a constant term in the
free energy below the Néel temperature. A constant term can always shift the total
magnetic energy term just as the 2λ without changing the time evolution. However,
the m part is kept as a perturbative contribution. A strong coupling constant λ shifts
the small parameter contribution to a significant value.
The resulting free energy contribution is:

E =

∫
dV (2A(∂n)2 + 2λ(1− n2

x) + εm2). (4.6)

The time evolution of the synthetic antiferromagnet can be described by an adapted
version of the LLG equation with applied spin current (2.7) in terms of the sublattices.
Since the system is one-dimensional, all derivatives are positioned along the easy axis.
Also, the spin-polarised current applied along the wire direction reduces to a scalar
value ν. According to the LLG equation for ferromagnetic systems, the sublattice
magnetic moments change in time, as they are treated as two coupled ferromagnets
coupled antiferromagnetically. Both equations hold at the same time. Therefore, the
LLG equations can be redefined in terms of the antiferromagnetic order parameters
n and m as was done for the total magnetic energy that is inserted into these new
equations. The ferromagnetic starting equations of both lattices are equal:

ṁ1/2 = γm1/2 ×Heff1/2
+ αm1/2 × ṁ1/2 − ν∂m1/2 + βm1/2 × ν∂m1/2. (4.7)

Again, m1 = m+ n and m2 = m− n are used to determine the equations.

ṁ1 ± ṁ2 = γm1 ×Heff1 ± γm2 ×Heff2

+ αm1 × ṁ1 ± αm2 × ṁ2 − ν∂m1 ∓ ν∂m2

+ βm1 × ν∂m1 ± βm2 × ν∂m2

= γ(m+ n)× (
δE

m
+
δE

n
)± γ(m− n)× (

δE

m
− δE

n
)

+ α(m+ n)× (ṁ+ ṅ)± α(m− n)× (ṁ− ṅ)− ν∂(m+ n)∓ ν∂(m− n)

+ β(m+ n)× ν∂(m+ n)± β(m− n)× ν∂(m− n)

(4.8)

The ± differentiates between the two LLG equations with respect to the order param-
eters 2m = m1 +m2 and 2n = m1 −m2. The m and n only terms do not vanish
because of the symmetry of the system in the case of ṁ = ṁ1 + ṁ2. In the case
of ṅ = ṁ1 − ṁ2, the m and n only terms vanish because of the symmetry of the
system. All parts occur twice so that the factors of two cancel out.

ṁ = γm× δE

δm
+γn× δE

δn
+α(m×ṁ+n×ṅ)−ν∂m+β(m×ν∂m+n×ν∂n) (4.9)
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ṅ = γm× δE
δn

+γn× δE

δm
+α(m×ṅ+n×ṁ)−ν∂n+β(n×ν∂m+m×ν∂n) (4.10)

Those two equations (4.9) and (4.10) describe the time evolution of an antiferromag-
netic system if it can be described by two ferromagnetic sublattices, coupled by an
interlattice exchange interaction. A generalisation of these equations in a higher di-
mensional system is achieved by switching ν∂ to (ν · ∇). In this case, the current
direction and spatial change can point in any direction.
The LLG equations will be used to determine a critical current value beyond which a
domain wall shedding in the synthetic antiferromagnet happens as was done for the
ferromagnetic case. Before that, the determination of the effective field terms is done
in the next section.

4.2. Variational principle

So far, the equations of motion for the synthetic antiferromagnet (4.9) and (4.10) have
been formed using the LLG equations of both sublattices in terms of the new param-
eters n and m. The Néel vector determines the change of order in antiferromagnetic
systems over time. The magnetisation serves as a perturbation-like quantity as it is
tiny. The LLG equations as time evolution depend on the external spin-polarised
current term, including the damping term proportional to β, as well as the damping
term with α. Also, the equations are dependent on the change of the total magnetic
energy E concerning both parameters n and m.
The effective field contributions to the equation are calculated using the antiferromag-
netic constraints of |n| = n2 = 1 below the Néel temperature and its implication of
∂n ·n = 0. This is based on an approach used in the scientific report from Hals et al.
[23] and adapted to the formalism used in this thesis.
The total magnetic energy is shown here (4.6):

E =

∫
dV (2A(∂n)2 + 2λ(1− n2

x) + εm2). (4.11)

In the ferromagnetic case, a functional derivative of E with respect to the magneti-
sation vector m is sufficient to determine the effective field, driving each magnetic
moment along its direction. This is shown in the domain wall shedding section of
the ferromagnetic domain wall description. However, the correlation between both
antiferromagnetic parameters implicates constraints that need to be addressed in the
calculation. A functional derivative δE

δm should depend on both parameters, the n
and m state. Mathematically, the right causality is built using a variational approach
instead of the functional derivative.
The variational formalism changes the total magnetic energy for one of both param-
eters. The antiferromagnetic constraints are fulfilled for both. The total magnetic
energy is the action of the system and therefore the Hamilton principle can be applied
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to it. This principle states that the variation of the energy with respect to a random
variation vector θ vanishes for physical solutions.
Two phase space points with a given position and momentum determine two physical
states of a system. A transition from one state to the other is feasible along every
possible way between those two points, at least in principle. The physical path taken
in the time evolution of the system is given by one of these possibilities. The Hamil-
ton principle states that if the state is varied in terms of a random vector that this
variation δXE =

∫
dV θ · (...) = 0 for any generalised coordinate X vanishes. The

equation of motion is the θ independent part (...). Since the variation of the action
is vanishing, this Hamilton principle is also called the principle of least action. The
equations of motion are the effective field terms of the LLG equations because they
evolve the magnetisation and Néel vector in time, as the effective field should do.
The variation is implemented through the following steps: The order parameter vari-
ation are θ dependent variables δn ∼ θ or δm ∼ θ. Even though, they are chosen so
that the variation of the constraint vanishes. In this case, all terms in the form of a
constraint are vanishing in the equations of motion. The system will evolve along the
directions complying with the constraints.
Hals et al. [23] determined the effective field with respect to the magnetisation δE

δm
by taking ”m normal to a fixed n” (Hals et al. 2011 [23]). The variation of m as a
quantity perpendicular to n can be described by δm = θ− (n · θ)n. The second part
(n · θ)n is strictly perpendicular to the Néel vector. As stated above, the variation
of the n is set to zero in this case δn = 0. The constant length constraint of n is
automatically fulfilled in the case of no change. The orthogonality is tested explicitly:
δ(n ·m) = n · δm = n · θ − (n · θ)n · n = n · θ − (n · θ) = 0. In this calculation,
the variation δ(n ·m) - which will also be called derivative as it is a change of a
mathematical expression - behaves like a derivative and the product rule needs to be
deployed. The first term δn ·m vanishes due to the constant length of n. Inserting
δm into the second term and using n2 = 1 shows that the orthogonality is indeed
fulfilled.
The only relevant term in the total magnetic energy (4.6) is given by the interlattice
exchange contribution εm2:

δ(m2) = 2m · δm = 2m · (θ − (n · θ)n) = 2mθ −m ·n(n · θ) = 2m · θ. (4.12)

Therefore, the total variation with respect to the magnetisation as follows:

δmE =

∫
drθ · (2εm). (4.13)

The effective field is given by the θ independent part δE
δm = 2εm.

A similar approach can be used for the determination of the effective field in terms
of the Néel vector δE

δn . The ansatz chosen is the following: δnE is calculated ”by
parallel transporting m on the sphere that is parametrised by n” (Hals et al. 2011
[23]). The constant length constraint of n can be ensured by modelling the change
as a rotation perpendicular to the vector direction and proportional to the random
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variation direction θ. δm ⊥ δn has to hold as the magnetisation m constraint to
be orthogonal to n. Then, the variation of m should be proportional to θ as well as
perpendicular to m itself. Therefore, δm = m × (θ × n) is used as the ansatz. The
rotation δn can be determined by the constraint m · n = 0:

δ(m · n) = δm · n+m · δn = n · (m× (θ × n)) +m · δn
= (n · θ)(m · n)− (n · n)(θ ·m) +m · δn
= m · (n(n · θ)− θ(n · n)) +m · δn = m · (n× (n× θ)) +m · δn.

(4.14)

Consequently, the cross product can be switched for an additional minus sign to get
δn = n×(θ×n). Even though, this vector is explicitly orthogonal to n, the constraint
n2 = 1 is tested: δ(n2) = 2n·δn = 2n·(n×(θ×n)) = 2n·(θ(n·n)−n(n·θ)) = 0. This
ansatz fulfils both constraints. The effective field will be determined in the following
steps using the total magnetic energy variation:

δnE =

∫
drδ(2A(∂n)2 + 2λ(1− n2

x) + εm2) (4.15)

The first part of equation (4.15) can be determined using a partial integration:

δ(2∂n)2 = 4∂n · δn = −4∂2n · (n× (θ × n)) = −4∂2n · (θ(n · n)− n(n · θ))

= −4θ · (∂2n(n · n)− n(n · ∂2n)) = −4θ · (n× (∂2n× n)).
(4.16)

The partial integration has to be used because ∂θ is ambiguous for a random vector
θ. The boundary conditions of the variation vector vanish. Hence, -4∂2n · δn results
in the second step. Afterwards, the ansatz for δn is inserted and the bac − cab rule
(A.1) is used. Then, the θ can be pulled out, leaving a different bac− cab rule as the
final result.
The anisotropic contribution λ(1− n2

x) is calculated in a similar way:

δ(1− n2
x) = −2nxδnx = −2nxx̂ · δn = −2nxx̂ · (n× (θ × n))

= −2nxx̂ · (θ(n · n)− n(n · θ)) = −2nxθ · (x̂(n · n)− n(n · x̂))

= −2nxθ · (n× (x̂× n)).

(4.17)

The variation of a constant is non-existing. Also, the variation of δnx can be written
as a dot product with the x direction vector as it does not contribute to a product
rule in differentiation. The triple product is recast using the bac − cab rule (A.1).
Then, the θ and x are switched and the bac− cab rule is reversed.
The interlattice exchange interaction term will not contribute in this variation because
the magnetisation change is supposed to be perpendicular to the magnetisation itself:

δm2 = 2m · δm = 2m · (m× (θ × n)) = 0. (4.18)

The total variation of the free energy E in terms of the Néel vector can be written as:

δnE =

∫
drθ · (−4An× (∂2n× n)− 4λnx(n× (x̂× n))). (4.19)
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4. Antiferromagnetic domain wall description

The corresponding effective field is given by δE
δn = −4An×(∂2n×n)−4λnxn×(x̂×n).

Both effective field terms are summarised in the following equation:

δE

δm
= 2εm,

δE

δn
= −4An× (∂2n× n)− 4λnxn× (x̂× n). (4.20)

Within this section, the foundation for a critical current calculation for domain wall
shedding in the one-dimensional synthetic antiferromagnetic nanowire has been com-
pleted by the calculation of the effective field terms occurring in the antiferromagnetic
LLG equations (4.9) and (4.10). In contrast to the ferromagnetic calculations, the
effective field could not be determined using the functional derivative approach as it
does not contemplate the antiferromagnetic constraints below the Néel temperature.
A variational approach in which the effective field was calculated using the Hamilton
principle on the system’s action E was chosen instead. The physical path taken
from one point in phase space to another one can be calculated using a variation of
the collective coordinates while fulfilling the constraint. The resulting equations of
motion describe the effective field terms as they point along the direction in which
the collective coordinates evolve in time based on the material parameters.

4.3. Antiferromagnetic critical current for shedding

In the previous sections, the LLG equations for a one-dimensional synthetic antifer-
romagnet with corresponding effective field terms were derived in the equations (4.9),
(4.10), (4.20). This system is built with an interlattice exchange interaction, the in-
tralattice exchange interaction and an easy axis anisotropy. Next, a semi-infinitely
long nanowire system with the pinning of the Néel vector orthogonal to the easy axis
is used to start a domain wall shedding as in the ferromagnetic case. The critical
current value is the spin-polarised current strength above which a domain wall starts
to detach itself from the pinning point set to the origin. A static case approximation
and the use of the Noether theorem will be needed to derive this current value.
Although the LLG equations represent the full dynamics of the specified systems, it is
necessary to consider simplifications to get an analytical result. A domain wall move-
ment starts at the critical current value and is not present below it. Therefore, the
boundary value can be calculated in the stable state below the critical value, which is
a static configuration with ṁ = ṅ = 0. Also, a slow detaching and movement of the
wall justifies this ansatz. The full LLG equations gets reduced to an α independent
quantity. The terms proportional to the dissipative constant β can be neglected be-
cause the movement can be treated adiabatically. Any dissipative term is negligible
in this approximation. The resulting LLG equations are given by:

0 = γm× δE

δm
+ γn× δE

δn
− ν∂m

0 = γm× δE

δn
+ γn× δE

δm
− ν∂n.

(4.21)

46



4. Antiferromagnetic domain wall description

The insertion of the effective field terms (4.20) complete the formalism:

0 = γm× 2εm+ γn× (−4An× (∂2n× n)− 4λnxn× (x̂× n))− ν∂m

0 = γm× (−4An× (∂2n× n)− 4λnxn× (x̂× n)) + γn× 2εm− ν∂n.
(4.22)

The interlattice exchange term vanishes in the top equation due to a cross product of
the same vector. The bac− cab rule is used to rewrite the triple products taking the
last cross product as one part:

m× (n× (∂2n× n)) = n(m · (∂2n× n))− (∂2n× n)(m · n) = n(m · (∂2n× n))

m× (n× (nxx̂× n)) = n(m · (nxx̂× n))− (nxx̂× n)(m · n) = n(m · (nxx̂× n))

n× (n× (∂2n× n)) = n(n · (∂2n× n))− (∂2n× n)(n · n) = −∂2n× n
n× (n× (nxx̂× n)) = n(n · (nxx̂× n))− (nxx̂× n)(n · n) = −nxx̂× n.

(4.23)

The magnetisation vector and the Néel vector are perpendicular to each other by
construction. Therefore, the second term of the m× equations vanish. In the bottom
equations, the first part of the bac − cab formula is zero due to the orthogonality
between n and its product. The LLG equations are transformed into the following
form:

0 = 4Aγ∂2n× n+ 4λnxγx̂× n− ν∂m (4.24)

0 = −4Aγn(m · (∂2n×n))− 4λnxγn(m · (nxx̂×n)) + γn× 2εm− ν∂n. (4.25)

Equation (4.25) is multiplied by n× to cancel out the first two terms. The triple
product of the interlattice exchange reforms to an m only term. Then, a solution of
the magnetisation vector with respect to the Néel vector is found:

2γεm = −νn× ∂n. (4.26)

The spatial derivative of this equality is determined and inserted into the other LLG
equation to get a Néel vector only equation. Therefore, ∂m = ∂(n×∂n) = −∂2n×n
needs to be used. The two minus signs occurring lead to a negatively signed result.

0 = 4Aγ∂2n×n+4λnxγx̂×n−
ν2

2γε
∂2n×n = (A− ν2

8γ2ε
)∂2n×n+λnxx̂×n (4.27)

As in the ferromagnetic calculations, the one-dimensional semi-infinitely long nanowire
system with a pinned origin has two symmetries that can be used to determine the
critical current value. The Noether theorem states that ”every continuous symmetry
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of a system entails a conservation law” (Altland and Simons 2010 [3]). As already
described in the ferromagnetic domain wall shedding section, the origin of the system
is chosen arbitrarily and it can be shifted to a different point. This implies the con-
servation of the linear magnetic momentum.
Also, the rotation of the system around the x-axis does not change the free energy.
Therefore, the rotation invariance leads to a conservation of the total angular momen-
tum around the x-axis. Again, as in the ferromagnetic calculations a multiplication by
certain values demonstrate those conservation laws. Those two possible multiplying
factors are x̂ and n × ∂n. These quantities would not be conserved in the case of
dissipation.
The conservation of the angular momentum along the x-axis is shown by the multi-
plication of equation (4.27) by x̂:

0 = x̂ · ((A− ν2

8γ2ε
)∂2n× n+ λnxx̂× n)

0 = (A− ν2

8γ2ε
)∂(x̂ · (∂n× n)).

(4.28)

The anti-commuting cross product marks ∂2n×n = ∂(∂n×n) and the fact that the
anisotropy term equals zero. The equation (4.28) points out that the derivative of the
angular momentum along the x-axis is zero. Hence, this quantity is conserved and
has a constant value.
The system’s boundary conditions at x = 0 and x → ∞ can be used to determine
the constant value or be compared since they are equal. At x = 0, the Néel vector
points along the z direction (n = ẑ) by definition of this pinning. Also, at x→∞ it
points along or against the easy axis of the system n = ±x̂. Those directions can be
explained by the fact that the sublattice magnetisation values are the constituents of
the Néel vector and the anisotropic axis is the x-axis for both.
Towards infinity, there is no change in the magnetisation direction. Therefore, the
spatial derivative of n vanishes: ∂n = 0. Then, the constant value of the conserved
quantity must be zero as well. At x = 0, the Néel vector strictly points along z. The
cross product can be determined and both values can be compared:

∂ny|x=0 = 0. (4.29)

The material parameters do not contribute to this equality.
The second conservation law of the system is the linear momentum conservation along
the x-axis. This can be shown by a multiplication of equation (4.27) by n× ∂n:

0 = (n× ∂n) · ((A− ν2

8γ2ε
)∂2n× n+ λnxx̂× n). (4.30)
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The Lagrange identity for vectors (A.2) is used to rewrite the equation. Also, the
chain rule of derivation can be applied backwards to get ∂(∂n)2 = 2∂2n · ∂n.

0 = −2∂((A− ν2

8γ2ε
)(∂n)2 + γλn2

x)

0 = ∂((A− ν2

8γ2ε
)(∂n)2 + γλn2

x).

(4.31)

The anisotropic part is recast using the same trick ∂(∂nx)2 = 2nx∂
2nx. The constant

length constraint n2 = 1 is why the other terms in the Lagrange identity vanish.
The values of both boundary conditions can be checked at x = 0 where n = ẑ and
at x → ∞ where n = ±x̂ and ∂n = 0, just as in the angular momentum case. The
equation (4.31) for the linear momentum along the x direction at x → ∞ is γλ =

constant. This holds because of n2
x = 1 at x at infinity. Also, (A− ν2

8γ2ε
)(∂n2)|x=0 =

constant is the value of the momentum at x = 0. Those equations share the same
constant value because of the conservation. Hence, they can be combined to:

(A− ν2

8γ2ε
)(∂n2)|x=0 = γλ. (4.32)

As in the ferromagnetic computations, the equality can be facilitated using the fact
that (∂n)2 = (∂nx)2 + (∂ny)

2 + (∂nz)
2. Also used are (∂nz)

2 = 0 at x = 0 from the
constant length constraint and (∂ny)

2 = 0 at x = 0 because of the angular momentum
conservation formula (4.29).

(∂n2
x)|x=0 =

γλ

A− ν2

8γ2ε

(4.33)

The squared change of nx must be greater or equal to zero mathematically. The
boundary term at which the equation does not hold anymore is given at the point of
(∂n2

x)|x=0 = 0. Anything below zero is an instability of the system. If the state is not
stable anymore, a domain wall will start to detach itself and move along the wire in
the electron current direction. The condition of instability is tested below:

0 <
γλ

A− ν2

8γ2ε

. (4.34)

Both γ and λ are positive constants. Hence, the condition for the squared current
strength is ν2 < 8γ2εA to match the inequality. This is equivalent to a critical value
of:

νc = 2γ
√

2Aε. (4.35)

All currents greater than the one in equation (4.35) fulfil the same condition and lead
to an unstable state with domain wall creation and movement along the nanowire
direction. A comparison of the ferromagnetic case νC = 2γ

√
λA without DMI to

49



4. Antiferromagnetic domain wall description

the antiferromagnetic one (4.35) shows that both depend on the square root of the
intralattice exchange interaction

√
A and the gyromagnetic ratio γ.

The intralattice exchange interaction or exchange interaction in a ferromagnetic sys-
tem favours parallel alignment of the same lattice magnetic moments. No interaction
strength leads to a system where all magnetic moments point along the easy axis of the
anisotropy and both sublattice magnetisation vectors are antiparallel. An application
of a spin-polarised current along the wire at an orthogonal pinning point would lead
to an easy domain wall creation since the neighbouring spins have no force to keep
them parallel. At interaction strengths much greater than the other interactions, this
force is dominant. Domain wall shedding is only possible for huge currents because all
magnetic moments want to be parallel to each sublattice neighbour, but the domain
wall is determined by a constant rotation of the magnetisation vector within. The fact
that the current strength needed grows in a non-linear way can not be illuminated by
such an argument. However, those two cases show that the square root dependency
of the critical current for shedding in terms of the intralattice exchange interaction is
justifiable.
The critical current does also depend on the interlattice exchange interaction with a
square root proportionality. This can be explained by the boundary cases as well.
The sublattice magnetic moments are modelled antiparallel at the beginning, with
or without interlattice exchange. At first, the case of no interlattice exchange is dis-
cussed. The adjoining neighbour spins of the same lattice align due to the intralattice
exchange. Also, both sublattices will either align with the anisotropic direction or an-
tiparallel to it. Hence, towards large x, both sublattice magnetisations will be parallel
or antiparallel.
As the total magnetic energy was built, other interactions such as the dipole-dipole
interaction were neglected because they were much smaller in their strength compared
to the interlattice exchange. Keeping this approximation, small currents applied along
the wire direction force both magnetisation values at the pinning point to rotate along
the wire direction independently of each other. Then, some kind of ferromagnetic
domain wall structures will move in each of the sublattices like in a ferromagnetic
nanowire system. Also, no DMI in the system indicates that both types of a domain
wall will move at the same velocity [38].
However, this approximation is not very realistic. Other interactions like the demag-
netisation field, produced by the ferromagnetic state, will change this consideration.
Adjacent spins between the sublattices are forced to align to the other magnetic mo-
ments due to this field. Since both sublattices are ferromagnetic, the system should
behave like a ferromagnetic system in total. This means that the critical current will
be comparable to a ferromagnetic value when a first domain wall is created. The bot-
tom layer, which has a magnetisation value towards the negative x-axis, will rotate
towards the positive axis.
On the one hand, minimal interlattice exchange values result in lower energy required
to get a kink between antiferromagnetic coupled magnetic moments as shown in fig-
ure 4.2. Then, domain walls can be efficiently built because currents will push both
sublattices spins towards the x direction at a lower energy requirement and adjoining
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neighbour magnetic moments of the same lattice tend to align due to the intralattice
exchange. This leads to a domain wall building. On the other hand, high exchange
values lead to high energy levels needed to get a kink in between the magnetisation
vectors. In this case, large spin-polarised currents are needed to change both mag-
netisation values towards the easy axis direction to build up domain walls. Therefore,
after neglecting the limit of no interlattice exchange in the system, a square root de-
pendency of the critical current with respect to the interlattice exchange strength ε is
justifiable.
The ferromagnetic current depends on the anisotropic strength λ, while the antifer-
romagnetic one does not in this approximation. This is surprising since the easy axis
anisotropy is the main factor for the system’s structure along the wire. It is assumable
that different strengths of this anisotropy would change the current. For example, no
anisotropy would mean that all magnetic moments align with the pinning direction
due to the intralattice exchange, and a domain wall creation with a current along
the nanowire direction is not possible. Also, an anisotropy λ → ∞ blocks any type
of domain wall creation since all magnetisation values unequal to the x direction are
not in the energetic minimum. Therefore, an anisotropic dependency of the critical
current is justifiable but cannot observed.
An expansion to this formalism is done by adding more terms to the total magnetic
energy. For example, in the ferromagnetic case, the DMI changed the current value
needed and showed that different domain wall types behave differently. Also, different
kinds of anisotropies create different behaviour. The 180° domain walls built in this
formalism are not uniquely defined because the Néel vector could also be pointing
in the negative direction without changing the formalism. The ground states of a
system with such an anisotropy can not be distinguished in an experiment because
of the vanishing magnetisation of antiferromagnetic systems. However, 90° domain
walls built by a different anisotropy have two ground states, which can be measured
together.
Such a geometry of a one-dimensional synthetic antiferromagnetic nanowire system
with a pinning point can be tested for a domain wall shedding with different materials
to verify this calculation. The pinning could be used in the future as a write head for
a synthetic antiferromagnetic racetrack memory system which Parkin and Yang [35]
proposed.
The critical current value for shedding and its square root dependency on both the
interlattice exchange and the intralattice exchange will be tested in a simulation in
the next chapter. Also, the critical current value for shedding needs to be compared to
the critical current to break the antiferromagnetic ground state along the anisotropic
direction. If this value were lower than the shedding current one, no application of
the formalism would be possible because the system would not be stable anymore in
the region of possible shedding. Within the next section, this stability calculation will
be performed.
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4.4. Antiferromagnetic instability

So far, a theory for a one-dimensional synthetic antiferromagnetic nanowire system
has been built using two ferromagnetic sublattices with an interlattice exchange inter-
action. Also, an intralattice exchange interaction and easy axis anisotropy has been
used for the model. Now, the antiferromagnetic instability critical current value will
be determined.
A spin-polarised current can perturb the antiferromagnetic state and if it is large
enough, it can destabilise the state. It is necessary to know if such a critical current
value is greater or lower than the shedding current because if it is lower, the anti-
ferromagnetic state would not exist at a current where shedding could happen and
a racetrack application would not be possible. Therefore, an ansatz for determining
such a destabilising or instability current is established in this section.
The one-dimensional synthetic antiferromagnetic nanowire system with an easy axis
anisotropy and interlattice as well as intralattice exchange interaction with a to-
tal magnetic energy of equation (4.6) is taken without pinning. This system has
the ground state value of n = ±x̂. A perturbation is subjected to this sys-
tem perpendicular to the ground state value to get a destabilisation condition.
Both, the magnetisation m and the Néel vector n are taken for this perturbation
n = x̂ + (0, ny, nz)

T = x̂ + h and m = (mx,my,mz)
T . The constraint n2 = 1

is built in by the ground state direction and justifies the orthogonal perturbation
to it h. Mathematically, the x component has to vanish because of this constraint
|n|2 = 1 = (1+nx)2 +n2

y+n2
z = 1+2nx+(n2

x+n2
y+n2

z)→ nx = 0. The magnetisation
is set to be a perturbation like in the other calculations because of n�m.
The perturbation ansatz is inserted into the antiferromagnetic LLG equations (4.9)
and (4.10). The method used for the calculation is called linearisation of the system
because a higher order than linear expressions are magnitudes smaller than the rest
and will be neglected to facilitate the formalism. Without such a simplification, find-
ing an analytical result is much more complicated or even impossible.
The Néel vector contains the ground state x̂ and a perpendicular perturbation vec-
tor h. A spatial or time derivative of this quantity is given by ṅ = ˙̂x + ḣ = ḣ and
∂n = ∂x̂+∂h = ∂h. Both the time and spatial derivative of the ground state direction
vanish as it is a constant value, but the change is non-vanishing for the perturbation.
Also, the perturbation change of the magnetisation is non-vanishing. The results
from the variational principle 4.20 are inserted since they fulfil the antiferromagnetic
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restrictions of n2 = 1 and n ·m = 0:

m× δE

δm
= 0

m× δE

δn
= −4Am× (n× (∂2n× n))− 4λnxm× (n× (x̂× n))

= −4An(m · (∂2n× n))− 4λnxn(m · (x̂× n))

n× δE

δm
= 2εn×m

n× δE

δn
= −4An× (∂2n(n2)− n(∂2n · n))− 4λnxn× (x̂(n2)− n(x̂ · n))

= −4An× ∂2n− 4λnxn× x̂.

(4.36)

The four possible combinations of the LLG equations are shown above. The full
equations with the ansatz inserted are given by:

ṁ = −4Aγ(x̂+ h)× ∂2(x̂+ h)− 4λγ((x̂+ h))x(x̂+ h)× x̂
+ α(m× ṁ+ (x̂+ h)× ( ˙̂x+ ḣ))− ν∂m+ βν(m× ∂m) + βν(x̂+ h)× ( ˙̂x+ ḣ)

= −4Aγx̂× ∂2h+ 4λγx̂× h+ αx̂× ḣ− ν∂m+ βν(x̂× ∂h)

(4.37)

ḣ = ˙̂x+ ḣ = −4Aγm× ((x̂+ h)× (∂2(x̂+ h)× (x̂+ h)))

− 4λγ(x̂+ h)xm× ((x̂+ h)× (x̂× (x̂+ h))) + 2εγ(x̂+ h)×m
+ α(m× ( ˙̂x+ ḣ) + (x̂+ h)× ṁ)− ν∂n+ β((x̂+ h)× ν∂m+m× ν∂(x̂+ h))

= 2εγx̂×m+ αx̂× ṁ− ν∂h+ βν(x̂× ∂m).

(4.38)

In both equations, all derivative terms need to be according to h to be non-vanishing.
If such a term is also dependent on magnetisation, it will get neglected since it can
not be linear in the perturbation. In the ṅ equation, the intralattice exchange and
anisotropic exchange term are of a higher order than the linear one. The interlattice
exchange term is only dependent on the magnetisation. Both equations up to first
order in perturbations are displayed below as equation (4.39):

ṁ = −4Aγx̂× ∂2h+ 4λγx̂× h+ αx̂× ḣ− ν∂m+ βν(x̂× ∂h)

ḣ = 2εγx̂×m+ αx̂× ṁ− ν∂h+ βν(x̂× ∂m).
(4.39)

The x component of the three-dimensional vectors - the magnetisation and perturba-
tion of the Néel vector - are zero. For example, the x component of the magnetisation
has to vanish to fulfil the antiferromagnetic constraints because the ground state di-
rection along x enforces that mx = 0 by n ·m = 1mx + hymy + hzmz = 0. Then, the
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two equations can be written in the following two-dimensional form:

(∂t + ν∂)

(
my

mz

)
= (−4Aγ∂2 + 4λγ + α∂t + βν∂)

(
hz
−hy

)
(2εγ + α∂t + βν∂)

(
my

mz

)
= (∂t + ν∂)

(
hz
−hy

)
.

(4.40)

Those four equations are separated with respect to my and hz as well as mz and hy.
A Fourier transformation of both vectors m and h in time and space can be used to
reduce the total number of equations to two. The Fourier transformation is defined
by:(
my

mz

)
=

∫
dω′′dq′′

(
k(ω′′, q′′)
l(ω′′, q′′)

)
eiω

′′t−iq′′·r
(
hy
hz

)
=

∫
dω′dq′

(
f(ω′, q′)
g(ω′, q′)

)
eiω

′t−iq′·r.

(4.41)

This translates the system into frequency and momentum space (r, t) 7→ (q, ω). The
Fourier transformation is a transformation into a complete set of basis vectors given
by the exponential functions which are orthonormal. Each basis vector contributes to
this transformation by an amplitude X(ω, q). The amplitudes f, g, k, l used for the
perturbation components do not have be equal for the given perturbation directions.
However, before this transformation is used, it is crucial to note that an amplitude
X(ω′) can be determined for a given ω by a multiplication of the corresponding or-
thonormal functions. Within this example, the momentum q′ is neglected for simplic-
ity reasons. The calculation for the momentum is analogue.

X(ω′) =

∫
dte−iω

′tX(t) =

∫
dte−iω

′t

∫
dωX(ω)eiωt

X(ω′) =

∫
dt

∫
dωe−i(ω

′−ω)tX(ω) =

∫
dωδ(ω′ − ω)X(ω) = X(ω′)

(4.42)

Hence, multiplying the transformed equations (4.40) by the orthonormal basis vectors
(4.41) depending on ω will lead to a projection onto this frequency. For each possible
frequency, the equations need to be fulfilled. The derivatives occurring in the equations
act on the exponential term, yielding iω or −iqx ≡ −iq terms. The x components
of the magnetisation and Néel vector momentum remain after a ∂x derivative. The
integration cancels out due to the delta distribution δ(ω′−ω) leading to a derivative-
free theory only depending on ω and q and the amplitudes of the perturbations.
The resulting equations are:

(iω − iνq)
(
k
l

)
= (4Aγq2 + 4λγ + iαω − βνq)

(
g
−f

)
(4.43)

(2εγ + iαω − βνq)
(
k
l

)
= (iω − iνq)

(
−g
f

)
. (4.44)
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The Néel vector dependent terms are separated from the magnetisation ones on both
sides. The prefactors in front of the vectors can be joined into one constant M . Those
four equations can be connected into two equations determined by the Néel vector
perturbation amplitudes and M :

4Aγq2 + 4λγ + iαω − iβνq
iω − iνq

(
g
−f

)
=

iω − iνq
2εγ + iαω − iβνq

(
−g
f

)
. (4.45)

The equality can be written into a matrix form using that the off-diagonal contribution
is zero. This leads to the system of equations:(

M 0
0 M

)(
f
g

)
= 0. (4.46)

The determinant has to vanish to get two linearly independent amplitudes of the Néel
vector perturbation as in the ferromagnetic case (3.51). Then, the calculation reduces
to M = 0 only since both off-diagonal terms of the matrix are zero.

M2 = [(4Aγq2 +4λγ+iαω−iβνq)(2εγ+iαω−iβνq)+(iω−iνq)2]2 = 0 = M (4.47)

The equality can be used to determine the dispersion relation of ω with respect to q,
which is analysed to get t instability condition:

0 = (4Aγq2 + 4λγ + iαω − iβνq)(2εγ + iαω − iβνq) + (iω − iνq)2

0 = −(1 + α2)ω2 + [2(1 + αβ)νq + iα(4Aγq2 + 4λγ + 2εγ)]ω

+ 8(Aγq2 + λγ)εγ − (1 + β2)(νq)2 − iβνq(4Aγq2 + 4λγ + 2εγ)

ω1/2 =
2(1 + αβ)νq + iα(4Aγq2 + 4λγ + 2εγ)

2(1 + α2)
±[(

2(1 + αβ)νq + iα(4Aγq2 + 4λγ + 2εγ)

2(1 + α2)

)2

+
8(Aγq2 + λγ)εγ − (1 + β2)(νq)2 − iβνq(4Aγq2 + 4λγ + 2εγ)

1 + α2

]1/2

.

(4.48)

The parenthesis is facilitated at first. Then, the equality is arranged regarding the
power of the frequency. The ”pq”-formula is applied to get the dispersion relation.
This can be written as:

2(1 + α2)ω1/2 = 2(1 + αβ)νq + iα(4Aγq2 + 4λγ + 2εγ)±[ (
2(1 + αβ)νq + iα(4Aγq2 + 4λγ + 2εγ)

)2
+ 4(1 + α2)[8(Aγq2 + λγ)εγ − (1 + β2)(νq)2]− iβνq(4Aγq2 + 4λγ + 2εγ)

]1/2

.

(4.49)

If ω has an imaginary part lower than zero, the system will become unstable as shown
in the ferromagnetic calculations. In this case, the exponential term e−iωt will be real
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4. Antiferromagnetic domain wall description

and positive. It means that the amplitude in front of this factor increases exponentially
in time. No spin wave system can be stable under such a condition.
It is essential to analyse the value of the square root in terms of its real and imaginary
part. The most general solution can be calculated by rewriting the imaginary square

root
√
z as a form

√
x+ iy = ±

√
|z|+x

2 ± isgn(y)

√
|z|−x

2 [2]. This general equation is
too complex to get an analytical result most of the times and is not favoured for this
reason. However, for numerical calculations, it could be used. The imaginary part of
the square root is analysed together with the imaginary part in front of the square
root to see when it becomes negative. Apart from this direct rewriting, the usage of
the polar form of the imaginary unit yields a result.
The following formalism is based on the considerations of Davi R. Rodrigues. Any
imaginary number z = a + ib can be cast into a form depending on the length of
the quantity R =

√
a2 + b2 and a phase factor ϕ. The polar representation of the

imaginary number is z = Reiϕ = R(cosϕ + i sinϕ). Hence, the square root of a
complex number can be calculated as follows:

√
a+ ib = (Reiϕ)1/2 =

√
Reiϕ/2 =√

R(cos (ϕ2 ) + i sin (ϕ2 )). The imaginary part is Im(z) =
√
R sin (ϕ2 ). The phase factor

ϕ is calculated using a comparison of the polar and non-polar representation of z:
Im(z) = b = R sin (ϕ). Consequently, the phase is ϕ = arcsin ( bR).
At first, the complex number inside the square root of equation (4.49) needs to be
divided into a real and an imaginary part:

a = −4(α+ β)2(νq)2 − α2(4Aγq2 + 4λγ + 2εγ)2 + 32(1 + α2)(Aγq2 + λγ)εγ

b = 4α(1 + αβ)νq(4Aγq2 + 4λγ + 2εγ)− 4(1 + α2)βνq(4Aγq2 + 4λγ + 2εγ)

= 4(α− β)νq(4Aγq2 + 4λγ + 2εγ).

(4.50)

Next, the imaginary part of
√
a+ ib is changed:

Im(
√
z) =

√
R sin

(ϕ
2

)
=
√
R sin

(
arcsin

(
b
R

)
2

)
=

b

√
2R

√√
R2−b2
R2 + 1

=
b

√
2R

√√
a2

R2 + 1

=
b

√
2
√√

a2 +R
=

b√
2(a+R)

.

(4.51)

The sine function is simplified to the first equality of the second line using Mathematica
12 [52]. The squared length of a complex number R2 is the same as the square of the
real and imaginary part. A 1/R factor is pulled out of the root. Then, the denominator

reduces to
√

2(a+R) =
√

2(a+
√
a2 + b2).

All critical current derivations in this thesis use the fact that dissipation is very small
around the critical value. The constants α and β are negligible in the second-order
α2 ≈ β2 ≈ 0. Every term of the real and imaginary part with a squared or higher
damping are disregarded for the following calculation. The real part reduces to a ≈
32(Aγq2 + λγ)εγ +O(α2, β2, αβ) and the imaginary part is the same as before. The
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squared imaginary part vanishes b2 = O(α2, β2, αβ) ≈ 0. This shows the length R is
approximately the same as the real part a+R ≈ 2a. Hence, the linear imaginary part
in terms of damping is:

Im(
√
z) ≈ b

2
√
a

+O(α2, β2, αβ) =
(α− β)νq(4Aγq2 + 4λγ + 2εγ)√

8(Aγq2 + λγ)εγ
+O(α2, β2, αβ).

(4.52)

Consequently, the imaginary part of the dispersion relation (4.49) takes the following
form:

Im(ω1/2) =
1

2(1 + α2)

[
α(4Aγq2 + 4λγ + 2εγ)± (α− β)νq(4Aγq2 + 4λγ + 2εγ)√

8(Aγq2 + λγ)εγ

]

=
α(4Aγq2 + 4λγ + 2εγ)

2(1 + α2)
√

8(Aγq2 + λγ)εγ

[√
8(Aγq2 + λγ)εγ ± (α− β)

α
νq

]
.

(4.53)

All pieces in front of the bracket are positive, as all constants are defined as positive.
The sign of the equality is decided by the sign of the

√
8(Aγq2 + λγ)εγ ± (α−β)

α νq
factor. The system becomes unstable if it is negative and remains in the ground state
for a positive sign. The critical current value is extracted from the transition point of
both states.

0 =
√

8(Aγq2 + λγ)εγ ± (α− β)

α
νq

0 =

(
8γ2Aε− (α− β)2

α2
ν2

)
q2 + 8γ2λε

(4.54)

The ± dependent piece is subtracted and both sides of the upper equality are squared.

Then, the structure is rearranged to the bottom form. As a result, 8γ2Aε = (α−β)2

α2 ν2

is needed to fulfil the requirement. This shows that the critical current value for the
stability of a synthetic antiferromagnetic system in one dimension is:

νci = γ
√

8Aε
α

α− β
. (4.55)

The stability of the system is decided by the same structure γ
√

8Aε as for the shed-
ding case (4.35). The difference of both depends on the damping factor β. However,
a direct comparison with β 6= 0 is impossible. The domain wall creation current was
established using β = 0 and it would change without this assumption. For example,
in the ferromagnetic calculations β 6= 0 meant that the linear and angular momentum
were not conserved variables. The same is predicted for the antiferromagnet. There-
fore, the current values change drastically.
The stability and shedding current are the same when β = 0. In this case, the α
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cancels out and the shedding derivation is valid for comparison. Ideally, the instabil-
ity current is larger than the creation current, as it shows that a domain wall driven
system is possible before it breaks down. Nevertheless, this picture is not ruined. Ev-
ery calculation performed was done using certain assumptions, for example: m � 1
or α � 1. An alteration of these assumptions does have consequences for the cal-
culations. A larger magnetisation changes the total magnetic energy of the system
because all second-order terms were neglected. Also, the small damping assumption
has been used to get the result. A recalculation of νci with different presumptions will
enlighten if both structures differ. However, it is questionable if an analytical solution
is possible if one of those hypotheses is changed.
Also, the ferromagnetic calculation proved that DMI could lower the critical current
requirement. An analysis of both currents with DMI could show different values.
Otherwise, another method, geometry of the sample or material parameters, have to
lower the domain wall creation requirements. Nevertheless, a confirmation that the
shedding current is well below the stability current can be made using simulations of
the pinned nanowire system for different material parameter sets. If only spin waves
and chaotic states, but no shedding are observed, the stability current is lower than
the creation current. In the following chapter, the theoretical shedding current (4.35)
is tested for a set of parameters to see if the square root dependency of the current on
the material parameters hold. Within this test, shedding is observed well below the
instability of the sample.

4.5. Summary of the antiferromagnetic calculations

In this chapter, the antiferromagnetic description of a one-dimensional nanowire sys-
tem was established. This antiferromagnetic system consists of two ferromagnetic
sublattices on top of each other, coupled between adjoining neighbours of each sub-
lattice. Such a system is called synthetic antiferromagnet as it is fabricated. Each
subsystem also has an exchange interaction within and an easy axis anisotropy.
Mathematically, the antiferromagnetic system is modelled as the total magnetic energy
of each sublattice system added up with the linking exchange interaction. This total
magnetic energy is adapted into new coordinates called antiferromagnetic magneti-
sation and Néel vector. Such a collinear system, having adjacent magnetic moments
pointing antiparallel, leads to a magnetisation of about zero and Néel vector in the
order of the sublattice moments. Therefore, the magnetisation vector acts as a pertur-
bation of the system, while the subtraction of the sublattice vectors is used to describe
the system’s dynamics.
The LLG equations have been adapted using the new generalised coordinates as well.
Also, the effective fields in these equations needed to be calculated differently from the
ferromagnetic case because of antiferromagnetic constraints to the order parameters.
The formalism of the variational principle was used to determine the effective field
terms, including the antiferromagnetic constraints. After that, the domain wall shed-
ding current could be calculated the same way as in the ferromagnetic case using the
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steady-state approach and neglecting the dissipative contributions. The symmetries
of the system could be analysed to discover the conserved quantities according to the
Noether theorem. Comparing the constant value at different positions in the system
resulted in a critical current value beyond which domain walls will form and move
along the synthetic antiferromagnetic nanowire.
At last, the determination of a general instability current for one-dimensional syn-
thetic antiferromagnetic nanowires was performed. A linearisation of the system and
a Fourier transformation into frequency-momentum space achieved a simplification
of both antiferromagnetic LLG equations without any derivatives. Also, the dissipa-
tive current terms were neglected to facilitate the equations. A quadratic dispersion
relation for the frequency was discovered using the result of the linearisation. This
quantity was analysed further to see when it develops negative and imaginary. The
total magnetic system becomes unstable since the spin wave description of the Fourier
transformation will diverge. Both critical values were compared in the β = 0 case.
In the next chapter, simulations of the system are analysed to investigate if the critical
current for shedding is reasonable. It also examines if the instability current is higher
than the domain wall creation current.
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5. Simulation of synthetic
antiferromagnetic domain walls

The critical current for the domain wall shedding of a synthetic antiferromagnet (4.35)
needs to be tested to check its plausibility. In addition, it is crucial to know that the
instability current is above the creation current. Both can be tested using numerical
micromagnetic simulations. The software package used for the simulations is Mu-
max3.10 from the DyNaMat group in Gent [50] [17]. It is an open source application
to the python 3 programming language.
Mumax3 simulations are run from the command line. The code is saved in text files
(*.txt) or mumax files (*.mx3), while the simulation outputs are saved in a table and
log file (*.txt) with all physical quantities of interest. The magnetisation state is also
saved in *.ovf format or NumPy files for further analysis. The time evolution of mag-
netic systems is realised by calculating the LLG equations with adjustable time steps.
Therefore, it is a numerical method and not an analytical model.
Mumax3 uses a two-dimensional or three-dimensional grid as the simulation box. Each
cell of the grid is orthorhombic. The simplest case is a primitive rectangular cell with
identical side lengths. The first step of the simulation initialisation is the specification
of the geometry of the system. The synthetic antiferromagnet is modelled as a 256x1x2
grid. Choosing all grid parameters in powers of 2 is beneficial for the computation
time needed [50].
The first coordinate is the length of the nanowire. The second one is the width, while
the third coordinate describes the height of the system. A synthetic antiferromagnet
is built from two ferromagnets on top of each other, separated by a non-magnetic
layer. This layer can be specified, but it is not essential because alternative modelling
neglects this zone while being computationally efficient.
In the next step, the cell properties have to be specified. Each cell has the dimen-
sions of 1x1x1 nanometre in length. Mumax3 features material region with different
characteristics. That enables the definition of the top layer and bottom layer as two
ferromagnetic regions. Both share the same material properties as in the analytical
calculations. However, the behaviour of both can be coupled by an extra function
called ext InterExchange(Region 1, Region 2, Coupling strength). As stated above,
this method is more efficient than building a custom interaction with a non-magnetic
layer while giving approximately the same result. A detailed explanation of both
models is found in a mumax3 workshop [31] by J. Leliaert and J. Mulkers.
Another material region is needed to design the pinning. A third region is defined
along the nanowire direction ranging from −∞ including the first cell of the wire.
The range stops at −127nm as Mumax3 positions the simulation box centre at the
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origin. The box has a total length of 256nm in the x direction. The command
frozenspins.setregion(Region, Strength) freezes all spins of the region for a strength
of 1. Hence, the two spins in the region 3 are set explicitly to a Néel vector of n =
(0, 0, 1)T by m.setCell(0, 0, 1, vector(0, 0, 1)) and m.setCell(0, 0, 0, vector(0, 0,−1)).
Both sublattice regions 1 and 2 share the x-axis by uniform(±1, 0.1, 0) with a cant-
ing in the y direction. All vectors of the system, one for each cell, are multiplied by the
saturation magnetisation value after they are normalised. Therefore, the canting term
does not change the behaviour. This canting is used to get a physical minimisation of
the energy before the simulation starts.
A relaxation of the grid should always be the first step before the time evolution and
data recording starts. The initial state needs to be adjusted to the effective field inter-
actions by relaxation. Those interactions are enabled by setting values to predefined
constants. Ku1 determines an anisotropy along a vector axis. The vector is specified
by AnisU = vector(1, 0, 0) as the easy axis. Aex enforces the intralattice exchange
interaction. It is set to be the same for both sublattices, but it can be regulated for
each region.
Other interactions that are not specified explicitly are not activated. One exception
is the demagnetisation field of the ferromagnet. It is the static magnetic field pro-
duced by the magnetic moments. The theoretical model assumes just the interlattice
exchange between the layers. Hence, the demagnetisation field should alter the result.
That is why it is turned off for the simulations even though the result would be more
realistic enabling it.
The theoretical predictions assume no dissipation α = β = 0, whereas the simulation
needs at least one of the two factors to stabilise the time evolution. It is not needed
for the current identification as this value is determined at the boundary where the
movement starts. At this point, the change of the system is adiabatic. The β equiva-
lent used in Mumax3 is set to zero and the α factor is set to 0.1 for all simulations.
The spin-transfer torque pieces of the LLG equation (2.7) can be modelled in two
different ways in Mumax3. One possibility is the ”Slonczewski spin-transfer torque”
[30] which is defined differently in this thesis. The Slonczewski expression is used to
model spin-transfer torques between fixed magnetisation layers and free layers. One
example of this is the MRAM.
The second possibility is the ”Zhang-Li spin-transfer torque” [30] used in Mumax3.
The magnetisation dependency is the same as for the spin-transfer components in this
thesis. However, the prefactors are different. It contains α and ξ compared to a β
used in this formalism. Nevertheless, the prefactors used in a simulation can take a
broad range depending on the material. It is not extraordinary when two simulations
take a different set of material parameters. Physical systems with antiferromagnetic
properties exist for a range of parameters, not single values only. Therefore, all damp-
ing terms are governed by the one prefactor α, which is chosen as in many other
simulations [31] and analysis [10].
The material parameters of the interlattice exchange interaction, intralattice exchange
interaction, and anisotropy also have a broad range of possible strengths. Today, the
samples can be manufactured in nanometre sizes, sharing similar characteristics with
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various constants. One example of such a small size pattern is the molecular beam
epitaxy method [49]. The material parameters suggested in the Mumax3 workshop
[31] for synthetic antiferromagnets are Ku1 = 800kJm−3, Aex = 15pJm−1 and the
interlayer exchange Interex = −0.5pJm−3 demonstrate typical value. Even though
these parameter values are realistic, a critical current analysis of simulation based on
the parameters leads to strengths in the order 1013Am−2. Such an electron stream is
strong enough to fuse any nanowire. Hence, a different set of parameters needs to be
used for the analysis.
The evaluation of the critical current strength is done utilising the bisection method
[27]. It takes two values, one above the boundary and one below. The mean value of
both is used to begin a simulation. This numerical time evolution is started with the
runwhile(Condition) command. The condition used to control the end of the run is
set to a domain wall passing linked with an or condition to an end time. If one of
both states is reached, the simulation stops. The magnetisation of the top layer cell
at the origin is compared to the easy axis magnetisation value. If |mmiddle −measy|
is smaller than 1.8, the simulation continues. If it is larger, the simulation interrupts
and the current is recorded, as a domain wall has passed the middle of the nanowire.
In this case, the magnetisation of the selected cell is nearly orthogonal to the easy
axis.
Two cases are distinguished. First, when no domain wall has passed within the time
set, the current value is set as the lower boundary of the bisection method. Second,
when a wall has passed, the current value is set as the upper boundary of the bisection
method. Then, the new mean value is calculated and the next run is started using the
current. This leads to a reliable result. The accuracy of the method can be calculated
using b−a

2n+1 < ε for the top value b, the bottom value a, the accuracy ε and the number
of steps n [27]. The gap between the boundaries is reduced by a factor of two each
step. 16 steps are needed using a start of b = 1013 and a = 1010 to get a precision
of ε = 108. Here, it is the lowest boundary of steps used for each simulation and the
broadest range of the limits.
The spin-polarised current strength of the Zhang-Li spin-transfer torque is specified
by a simple j = vector(x, y, z) in Mumax3. The current direction is based on the
positive current flow. Therefore, a minus sign in −xval states that the electrons of
the current moves along the nanowire direction. As stated above, the electron current
needs to be lower than 1013Am−2 to be applicable. This current needs to be con-
verted to the spin current velocity ν of the LLG equations (2.8). The critical current
needed for shedding in a synthetic antiferromagnetic system with easy axis anisotropy
and two types of exchange interaction is ν = γ

√
8Aε (4.35) for a normalised mag-

netisation. Any simulation done in this thesis runs with a saturation magnetisation
of Ms = 580e3Am−1. This factor is the same one as used in the Mumax3 workshop
simulation examples.
The theoretical spin velocity calculated needs to be adjusted with an Ms factor for
comparison. The spin current used in a simulation is j while the theoretical value is
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νc.

j =
2eMs

PµB
νc =

2eMsγ

PµB

√
8Aε (5.1)

The connection of both is still missing an additional Ms from the theoretical determi-
nation. Inserting all values shows that the simulation and analytics are approximately
the same for νc ≈ γ

√
8MsAε. The current does depend on the root of the saturation

magnetisation
√
Ms to be comparable to numerical calculations. In the following, the

analytical value will be determined as:

jT =
2eMsγ

PµB

√
8MsAε. (5.2)

The standard set of parameters used for the simulations are Ku1 = 8kJm−3,
Aex = 80fJm−1 and Interex = −0.5fJm−3. All of them are reduced by at least
two magnitudes compared to the Mumax3 workshop values [31]. The critical current
value is at approximately 3.49 · 1011Am−2. The domain wall creation of the proposed
constants can be verified visually using the autosave(m, time) command for every
time step time. The generated *.ovf files can be animated using the Mumax3-view
web browser page [11]. If one parameter is tuned to a tiny or immense value while
the others are kept constant, strange domain wall structures can be observed directly.
Therefore, the standard set is validated and a broad range around those conditions
with physical domain walls is identified. A summary of the lower and upper limits is
displayed in the table below.

The interlattice exchange and intralattice exchange are tested to see if the current

Parameter Standard value Lower boundary Upper boundary

Ku1 8kJm−3 80Jm−3 220kJm−3

Aex 80fJm−1 0.8fJm−1 8pJm−1

Interex −0.5fJm−3 −4aJm−3 −0.5pJm−3

Table 5.1.: The standard values used for the anisotropy strength Ku1, the intralattice
exchange constant Aex and the interlattice exchange constant Interex
are presented together with lower and upper limits used in this analysis.
Source: Author’s illustration.

depends on both by a square root. The anisotropy is investigated as well since some
dependency is expected. At first, the interlattice exchange is analysed. The figure 5.1
displays the simulation data in the range from −4aJm−3 to −0.5pJm−3 by blue dots.
The data are fitted by a square root function in the form of a

√
bx− c+ d, taking four

open parameters a, b, c and d. The SciPy curve fit function [43] is used for the fit. It
requires the data points and the fit function to estimate the optimal parameters by a
least squared method. The analytics curve is determined by jT of equation (5.2) and
multiplied by an extra factor to match the data.

The highest current is at the strongest coupling as expected. It is well below the
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Figure 5.1.: The figure displays the simulation data of the critical electron current
for domain wall shedding for different interlattice exchange constant
strengths. The data are fitted by a square root function and compared to
the analytical solution (5.2) for confirmation. Also, the lowest parameter
region is highlighted in the smaller window. Source: Author’s illustration.

1013Am−2 mark of wire fusing. The square root fit shows that the correlation of the
exchange strength and the electrical current is as expected. The theoretical curve
displays a similar square root dependency, but it diverges at the smallest range of
parameters. The model does not account for an offset value of current needed to get
a domain wall creation for a missing interlattice exchange. In this case, the nanowire
is a simple ferromagnet and the ferromagnetic critical current (3.35) depends on the
exchange interaction and the anisotropy. Both of them are unchanged and unequal
to zero. That is why the limit of no interlattice coupling results in ferromagnetic be-
haviour instead of the theoretical zero of the green curve. The ferromagnetic critical
current for the standard parameters is 2.72 · 1011Am−11. This is in good agreement
with the data points with the lowest coupling strength. At high coupling strengths,
the system is governed by antiferromagnetic coupling. Therefore, the critical currents
match.
The theoretical value has to be multiplied by a factor of 1.2 to match. This is not sur-
prising as the theoretical prediction used no β damping and neglected all interactions
apart from the three ones specified. The electron current definition has a 1/(1 + β2)
part (2.8) which is set to 1 in this analysis. Also, no temperature dependency was
expected. All of those simplifications change the outcome. The simulation was done
using the approximation of no demagnetisation field. The β equivalent was neglected,
but the damping pieces of the equation are α dependent in Mumax3. Then, the time
evolution accuracy is coupled to the time step interval used for the simulation. A
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smaller time step enhances the accuracy but takes longer to simulate in total. There-
fore, a difference lower than one magnitude between both values is explainable. The
theoretical prediction is plausible for the interlattice exchange.
A similar analysis is done for the intralattice exchange constant. A square root depen-
dency is forecast by the theory. Figure 5.2 displays the simulation data of the critical
electric current for a set of intralattice constants. The fit to the data unveils that it
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Figure 5.2.: The figure displays the simulation data of the critical electron current
for domain wall shedding for different intralattice exchange constant
strengths. The data are fitted by a square root function and compared to
the analytical solution (5.2) for confirmation. Also, the lowest parameter
region is highlighted in the smaller window. Source: Author’s illustration.

matches the square root dependency. The theoretical curve needs to be multiplied by
a factor of 2.77 to overlap with the fit and the data points. The multiplication factor
needed to match the data is low enough to validate the calculation for the same reason
as for the interlattice exchange.
It is expected that a correction factor is needed to combine both simplified models.
However, the difference of this coefficient to the other exchange is surprising. The
interlattice constant is set to a value where the system behaves antiferromagnetic.
Nevertheless, the neglected interactions may have a greater impact on the material
parameter intralattice exchange than the manufactured interlattice exchange.
The theoretical curve and the data is comparable at the lowest parameters used. No
ferromagnetic behaviour is expected in contrast to the interlattice case. Still, both
magnetic states - the ferromagnetic and antiferromagnetic one - approach a zero cur-
rent needed for a domain wall creation when the intralattice exchange vanishes. Next
neighbours along the nanowire will not be constricted to be parallel and magnetic
moments will rotate with the spin current unhindered.
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The two exchange constants change the critical current needed for shedding as ex-
pected. However, the theory does not involve anisotropy strength. Hence, the current
needed should stay approximately constant. This parameter adjusts the force keep-
ing the magnetic moments parallel or antiparallel to the easy axis. The domain wall
width is determined by the anisotropy (3.9). The ferromagnetic theory predicts that
the critical current changes with the anisotropy. Therefore, an anisotropic dependency
of the synthetic antiferromagnet critical current is reasonable.
Figure 5.3 demonstrates the critical current change with respect to the anisotropy.
The data points do not remain constant and do not change in a square root behaviour
as for the ferromagnet. Instead, the 4th root describes the slope agreeable. From the
theoretical point, including β and other interactions could show another term in the
critical current with 4

√
λ. Besides that, the data cannot be analysed further.

The instability current was checked as well. The calculations showed that both criti-
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Figure 5.3.: The figure displays the simulation data of the critical electron current for
domain wall shedding for different anisotropy constant strengths. The
data are fitted by a square root function and 4th root function for confir-
mation of the dependency. Source: Author’s illustration.

cal currents have the same value but the instability current should be higher than the
shedding current. The data explains that the theoretical prediction for the shedding
is valid within the assumptions. Also, single domain walls are created and moved at
currents higher than the critical value. Therefore, the instability condition needs to
be higher than the current values tested. A new approach to instability can lead to
an accurate result. Nevertheless, a racetrack memory system of a synthetic antiferro-
magnetic nanowire is possible based on the theory and simulations.
The analysis of the synthetic antiferromagnetic instability (4.55) did leave the question
if the |m| ≈ 0 constraint was justifiable. The magnetisation vector time evolution in
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the centre of the nanowire is checked by a 20 cycle simulation between 1010−1012Am−2

with standard parameters. Each run is cut off after 20ns if no domain wall did pass.
The magnetisation vector is saved every 0.1ns. Figure 5.5 displays the time evolution
of |m| in 9 parts as 9 of the 20 runs showed a domain wall. The highest current is
used at the top left and the critical current value is shown at the bottom right. The
x-axis is ongoing in the number of total time steps simulated. All subplots aligned
yield the total simulation. However, the last 0.5ns are cut out at each part.
The rising edges at the right of each plot indicate a domain wall approaching the
centre. The magnetisation value climbs to values higher than 1.8 and fall to zero at a
new cycle. This does not include new information, but it reduces the visibility of tiny
magnetisation changes. That is why the highest magnitude displayed is at about 0.2.
Figure 5.4 shows a domain wall displayed using Mumax3-view. The large magnetisa-
tion values of 1.8 appear as both sublattices rotate towards the y-axis. This breaks
down the antiferromagnetic order in the domain wall while it is kept outside of it.
The top left flank in the figure 5.5 is approached with a large noise due to a current

Figure 5.4.: The figure displays the centre of the nanowire simulated in Mumax3 il-
lustrated by Mumax3-view. A synthetic antiferromagnetic domain wall
is shown at the centre. The vectors of both lattices point along the y
direction of the system. Source: Author’s illustration in Mumax3-view
[11].

much larger than the critical one. The other domain walls do not show such a large
noise factor. The magnetisation vibrates at the start of each new cycle. The subplot
in the middle left demonstrates that 4 runs were done below the critical current and
the last one above it. Hence, a total of 20 noise blocks are visible throughout the
graph. The initial magnetisation reacts to the spin current added and rotates slightly
until it achieves a stable state or a domain wall is created.
The |m| ≈ 0 constraint holds when no domain wall passes, but it does not within
a domain wall structure. The magnetisation rotation towards the y-axis for both
sublattices is also predicted for an instability of the system. The instability is charac-
terised by spin waves throughout the nanowire. Those can rotate like domain walls.
Therefore, |m| ≈ 0 is no preset for the instability. The shedding current calculation
is not affected by this interpretation as it describes the creation of a domain wall at
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5. Simulation of synthetic antiferromagnetic domain walls

the pinning point instead of the change of the total system.
The simulations for the synthetic antiferromagnet showed that the theoretical pre-
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Figure 5.5.: The figure displays the magnetisation evolution in time at the centre of
the nanowire in a simulation. It is an ongoing graph split into parts
from the top left to the bottom right. The x-axis is divided into 0.1ns
time steps. A total of 20 runs were taken. A domain wall passes at
each rising edge. The curves are cut off at the highest magnitude of 0.2
to highlight the preceding change of the magnetisation value. Source:
Author’s illustration.

dictions for the shedding current are justifiable but that an anisotropy dependency
is expected. The analysis of the magnetisation vector magnitude |m| demonstrates
that the small size approximation does hold outside of spin wave and domain wall
structures. Therefore, the instability current should be recalculated without the con-
straint.

68



6. Conclusion and outlook

Building up a formalism to describe the shedding of domain walls in one-dimensional
synthetic antiferromagnetic nanowires was the primary goal of this thesis. Simulations
should confirm these calculations. A racetrack memory system of synthetic antiferro-
magnetic nanowires is the main focus for a future application.
At first, it was crucial to describe the different possible domain wall types. Also, the
micromagnetic LLG equation and the total magnetic energy needed to be discussed as
the main equations of the thesis [16]. The ferromagnetic theory of the main domain
wall characteristics was necessary to use it for the antiferromagnetic formalism. The
domain wall profile and width were calculated to see that both are material parameter
dependent [38] [46]. The contour can be treated as a rigid body at low energies. An
external spin-polarised current moves domain wall structures by spin-transfer torque.
Therefore, the domain wall motion is facilitated by a Thiele approach [45]. The cor-
responding Hamiltonian equations were derived with two generalised coordinates, the
domain wall centre position and angle [36] [37].
The domain wall statics and dynamics were needed to see that racetrack memory
systems can be realised [34] [35]. A semi-infinitely long nanowire system was used to
derive a critical current strength for a spin-polarised current needed to shed domain
walls off a pinning point [38] [39]. The Noether theorem determined the two conserved
quantities of the system [3]. Those were needed to calculate the critical current. The
ferromagnetic shedding was compared to an instability current of ferromagnetic sys-
tems. A perturbation orthogonal to the easy axis was used to determine a dispersion
relation dependent on the spin current strength. Above the critical value, the spin
wave perturbation in the system will grow exponentially in time. The calculation
showed that this current is higher than the shedding current and a racetrack applica-
tion is possible in the ferromagnetic case [32].
Antiferromagnetic systems have the benefit that the total magnetisation in the system
is about zero. Synthetic antiferromagnets are manufactured by two oppositely mag-
netised ferromagnetic layers on top of each other. The interlayer thickness determines
the antiferromagnetic coupling strength between both [35]. Therefore, a nanowire
system is possible similar to the ferromagnetic one and domain wall properties of the
antiferromagnet can be examined the same way.
At first, the LLG equations of the antiferromagnetic system were built using new co-
ordinates, the magnetisation and the Néel vector [19] [28]. Then, the effective field
was calculated using a variational approach that regards the antiferromagnetic con-
straints [23]. The Thiele approach showed that antiferromagnetic domain walls could
be described and moved the same way and racetrack systems are theoretically possible
if a domain wall can be created [36] [37]. Therefore, a critical current of domain wall
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shedding was derived using the Noether theorem as in the ferromagnetic case [38].
This current validates that racetracks are possible in synthetic antiferromagnets and
it shows a bottom limit for the electrical current strength needed to realise it.
The determination of an instability current should confirm that shedding was possible
at a stable state. However, the result is the same as the shedding current. Hence,
either it is not possible, or the assumptions used for the calculation are wrong. A
simulation of the domain wall shedding was used to confirm the theory. Mumax3 was
chosen to simulate a pinned synthetic antiferromagnetic nanowire [17] [50]. A range
of parameters was tested. This proved the theoretical predictions of the interlattice
and intralattice exchange constants. Also, an unexpected anisotropic dependency was
seen. Adding more interaction to the system and neglecting fewer terms in the calcu-
lations could show this behaviour.
The simulations demonstrate a range of current strengths at which shedding was pos-
sible while the system remained stable. Therefore, it is confirmed that the instability
current needs to be corrected. The magnetisation vector magnitude was analysed
to see if the small magnetisation approximation for the antiferromagnet applies to
instability calculation. It showed that the magnetisation remains constant when no
domain wall passes. However, both sublattice magnetisation vectors point along the
same direction in the domain wall centre. Hence, the approximation is not acceptable
and the instability current needs to be recalculated without vanishing small magneti-
sation.
The computation done in this thesis demonstrates the static and dynamic proper-
ties of domain walls in ferromagnetic and antiferromagnetic systems. All calculations
show that the racetrack memory system can be built. Experiments need to be used
to verify the theoretical foundation for the currents. Then, systems with different
material parameters could lower the required current. Ferromagnetics showed that
systems with DMI have a lower energy requirement for shedding. The same needs to
be checked for synthetic antiferromagnets.
Also, the Néel vector was chosen arbitrarily in the calculations and it can not be
measured in experiments for the given anisotropy. A different anisotropy with 90°
domain walls, instead of the 180° ones, leads to measurable Néel vectors. Hence, a
theory of shedding using this anisotropy is helpful to understand the domain wall
creation and is needed to explicitly measure the Néel vector time evolution. Then,
noncollinear antiferromagnetic systems can be tested as well. After these calculations
and experiments, higher dimensional synthetic antiferromagnets can be analysed.
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A. Vector identities

bac− cab rule:

a× (b× c) = b(a · c)− c(a · b) (A.1)

Lagrange identity:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (A.2)

Spatial product:

a · (b×c) = c · (a×b) = b · (c×a) = −a · (c×b) = −c · (b×a) = −b · (a×c) (A.3)

77



B. Domain wall profile

This chapter of the appendix illuminates essential steps of the ferromagnetic domain
wall profile calculation. In the first step, (∂m)2 is analysed.

(∂m)2 = (Γ(x, t)x̂×m+ Λ(x, t)m× (x̂×m))2

= Γ2(x̂×m)2 + Λ2(m× (x̂×m))2 + ΓΛ(x̂×m) · (m× (x̂×m))

= (1−m2
x)(Γ2 + Λ2)

(B.1)

The Lagrange identity (A.2) is used to facilitate the Γ2 term: (x̂×m)2 = x̂2m2− (x̂ ·
m)2 = 1−m2

x and to compute the absolute value of a cross product for the Λ2 term:
(m×(x̂×m))2 = m2(x̂×m)2−((x̂×m)·m)2 = (x̂×m)2 = x̂2m2−(x̂·m)2 = 1−m2

x.
Both x̂ and m are normalised vectors. The cross term ΓΛ(x̂×m) ·(m×(x̂×m)) = 0
is vanishing as Λ and Γ term are orthogonal by construction.
The DMI strength of the total magnetic energy can be rearranged using the vec-
tor properties: Γm · (x̂ × (x̂ × m)) = Γm · (x̂mx − mx̂2) = Γ(m2

x − 1) and
Λm · (x̂ × (m × (x̂ × m))) = Λm · (x̂ × (x̂ − mxm)) = −Λmxm · (x̂ × m) =
−Λmxx̂ · (m×m) = 0. Hence, the total DMI strength is given by −DΓ(1−m2

x).
The spatial derivative of the magnetisations x component is ∂mx = Λ(1−m2

x). There-
fore, the parametrization of mx = tanh (f(x)) can be used to recast the Λ concerning
f(x):

Λ =
∂mx

1−m2
x

=
∂(tanh (f(x)))

1− tanh (f(x))2

Λ2 =
(∂(tanh (f(x))))2

(1/ cosh (f(x))2)2
= (∂f(x))2.

(B.2)

1 − tanh (f(x))2 = 1/ cosh (f(x))2 is used as cosh (f(x))2 − sinh (f(x))2 = 1 holds
by definition. The derivative of the hyperbolic tangent function will resolve in the
following chain rule: ∂(tanh (f(x))) = 1

cosh (f(x))2∂f(x). Then, the cosh f(x) parts will

cancel.
g(f(x)) can be analysed using ∂my of the ansatz cos (g)

cosh (f) compared to the derivative

of another ansatz ∂m = Γx̂ × m + Λm(x̂ × m) in the y component. The first

derivative resolves to ∂my = ∂( cos (g)
cosh (f)) = − tanh (f)

cosh (f)∂f cos (g) − 1
cosh (f) sin (g)∂g. The

second one reduces to ∂my = −Γmz − Λ tanh (f)my = −Γ sin (g)
cosh (f) − ∂f

tanh (f)
cosh (f) cos (g).

Λ = 1
Ξ and the values my = cos (g)

cosh (f) and mz = sin (g)
cosh (f) have been inserted. Then, both

possible solutions need to match. Each expression is compared and differences lead to
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constraints.

− Γ
sin (g)

cosh (f)
− ∂f tanh (f)

cosh (f)
cos (g) = −tanh (f)

cosh (f)
∂f cos (g)− 1

cosh (f)
sin (g)∂g

(B.3)

The discrepancy in the equality is solved if Γ = ∂g. The fixed Γ value of the one-
dimensional nanowire system indicates that g(f(x)) = xΓ = xD

2A after integrating by x.
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C. Rigid body treatment of a domain wall

The time derivative of the total magnetic energy E depends on the change of the
Hamiltonian. Since the Hamiltonian has no direct time dependency, the derivative
can be separated into a ṁ term as well as the effective field Heff. That dissociation
is an application of the chain rule of differentiation.

Ė =

∫
dV Ḣ =

∫
dV

δH

δm
· ṁ =

∫
dVHeff · ṁ

=

∫
dVHeff · (γm×Heff + αm× ṁ− (ν · ∇)m+ βm× (ν · ∇)m)

=

∫
dV [m · (γHeff ×Heff) + αṁ · (Heff ×m)

+ β(ν · ∇)m · (Heff ×m)−Heff · (ν · ∇)m)]

= (ν · ∇X)E − 1

γ

∫
dV (αṁ+ β(ν · ∇)m)(ṁ+ (ν · ∇)m)

(C.1)

The LLG equation with a spin-transfer torque contribution (2.7) is inserted for the
change of the magnetisation ṁ in the second line. After that, the spatial products
are revised by equation (A.3). The cross product of two parallel vectors is vanishing
and the (Heff×m) term is substituted by the LLG equation without damping to get
to the final line of the equation.
The equation is linear in dissipation for simplicity as both constants α and β are much
smaller than one and negligible in higher orders.

∫
dVHeff · (ν · ∇)m) = −(ν · ∇X)E

can be substituted because of the ansatz (3.17) where the spatial derivative of E with
respect to X is the same as a ∂m term. In this case, ∇ is just a partial derivative
along the x-axis in the one-dimensional system where the current is applied along the
wire ν = νx̂. The ∇ is displayed to analyse the problem as general as possible.
The corresponding Hamiltonian equation in terms of the collective coordinates or soft
modes position X and tilting angle Φ is Ė = {E,Hm} = ν∂XE. The Poisson bracket
{E,Hm} should fulfil both Ė = ν∂XE with an current applied and Ė = 0 without an
current. The ansatz Hm = E ± νΦ is chosen and tested in the following calculation:

Ė = {E,Hm} = {E,E ± νΦ} = {E,E} ± {E, νΦ}
= ±(±(∂XE∂ΦνΦ− ∂ΦE∂XνΦ)) = ν∂XE∂ΦΦ = ν∂XE

(C.2)

At first, Hm is inserted. Then, the Poisson brackets linearity is used to separate the
two terms, with the first one being zero because of the commutative derivatives inside
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C. Rigid body treatment of a domain wall

the bracket. The magnetic energy depends on both X and Φ. Therefore, the second
term {E,Φ} evaluates to ± the derivatives because of {X,Φ} = ±1. Both ± cancel
and the derivative of the angle Φ concerning the position X is zero. In the end, the
only term remaining depends on the derivative of Φ for Φ that is one. Hence, the
calculation shows that the ansatz fulfils the requirements needed.
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D. Domain wall shedding

The static case LLG equation for ferromagnetic systems (2.7) with the effective field
(3.25) is stated below:

0 = γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m.

This equation is multiplied by either x̂ or m × ∂m to obtain a formula for both
conserved quantities, the linear momentum conservation and the total angular con-
servation along the x-axis.
At first, the linear momentum conservation equation will be computed by the multi-
plication with m× ∂m:

0 = (m× ∂m) ·
[
γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m

]
0 = −2Aγ

[
(m ·m)(∂2m · ∂m)− (m · ∂2m)(∂m ·m)

]
+ 2D(m× ∂m) · (x(m · ∂m)− ∂mmx)

− 2λmx [(m ·m)(∂m · x̂)− (m · x̂)(∂m ·m)]

− ν(∂m× ∂m) ·m+ β [(∂m · ∂m)(m ·m)− (∂m ·m)(∂m ·m)]

0 = −2A∂2m · ∂m− 2λmx∂m · x̂+
β

γ
(∂m)2

0 = −A∂(∂m)2 − λ∂m2
x +

β

γ
(∂m)2

=⇒ ∂
(
A(∂m)2 + λm2

x

)
=
β

γ
(∂m)2.

(D.1)

The double cross products from the exchange term, the anisotropy strength and the
dissipative β expression are recast using the Lagrange identity (A.2). The constant
length constraint of the magnetisation vector m2 = m ·m = 1 and its inheritance of
m · ∂m = 0 are inserted. The spin-transfer torques spatial product can be rotated
using the equation (A.3) to prove that the expression does not contribute. The DMI
term is converted by the bac − cab rule for triple products (A.1). Both parts vanish
because of m · ∂m = 0.
The remaining items of the equation are shown in the third line. This calculation
should result in the conservation of the linear momentum in the nanowire system.
Hence, there should be some dependency on the linear momentum derivative equal
to zero ∂(∂m + Θ) = 0. If the derivative of something is zero, the derivated part
is constant. In this case, if ∂(∂m + Θ) = 0 for some Θ 6= −∂m, then the linear
momentum ∂m is conserved.

82



D. Domain wall shedding

The chain rule for derivation can be applied backwards to rewrite the exchange in-
teraction term with ∂(∂m)2 = 2∂2m · ∂m and ∂m2

x = 2mx∂mx. Combining both
structures and adding them to the left side leads to the last equation. In the case of
a vanishing dissipation, as expected in the regime of the critical current, the linear
momentum is a conserved quantity.
An equation for the conservation of the total angular momentum along the x direction
in the nanowire can be built similarly. The static case LLG equation shown above is
multiplied by the unit vector along the x direction x̂:

0 = x̂ ·
[
γm× (−2A∂2m+ 2Dx̂× ∂m− 2λmxx̂)− ν∂m+ βm× ν∂m

]
0 = −2Aγx̂ · (m× ∂2m) + 2Dγx̂ · (x̂(m · ∂m)− ∂m(x̂ ·m))

− 2λγmxx̂ · (m× x̂)− νx̂ · ∂m+ βx̂ · (m× ∂m)

0 = −2Aγ∂ [x̂ · (m× ∂m)] + 2Dγmx∂mx − ν∂mx + βx̂ · (m× ∂m)

=⇒ 2A∂ [x̂ · (m× ∂m)] +D∂m2
x +

ν

γ
∂mx =

β

γ
x̂ · (m× ∂m)

=⇒ ∂

(
2A [x̂ · (m× ∂m)] +D(mx +

ν

2Dγ
)2

)
=
β

γ
x̂ · (m× ∂m).

(D.2)

As in the calculation for the linear momentum, the DMI term is converted using the
bac− cab rule for triple products (A.1). One part is zero because of (m · ∂m). In the
fourth line, a partial derivative is pulled in front to get a conserved quantity structure.
For the exchange interaction, the reverse chain rule is given by:

x̂ · (m× ∂2m) = x̂ · (∂m× ∂m) + x̂ · (m× ∂2m) = ∂ [x̂ · (m× ∂m)] .

The DMI term 2mx∂mx = ∂m2
x is also adjusted by the chain rule of derivation.

D∂m2
x + ν

γ∂mx = ∂(m2
x + ν

γmx) is the same as ∂D(mx + ν
2Dγ )2 since the derivative of

a constant ∂D( ν
2Dγ )2 = 0 is zero. In the end, a formula for total angular momentum

conservation is found in the case of vanishing dissipation.
The two conserved quantities are constants in space so that they can be compared for
different coordinates. In both cases, the magnetisation is explicitly pointing along the
m = ẑ direction at x = 0. There is no change in the magnetisation at infinity because
it will point along the anisotropic direction as it is the system’s ground state.
The angular momentum evaluation is done in the following:(

2Ax̂ · (m× ∂m) +D(mx +
ν

2Dγ
)2

)
x=0

= 2A(my∂mz −mz∂my)x=0 +D

(
ν

2Dγ

)2

= −2A∂my|x=0 +D

(
ν

2Dγ

)2

and(
2Ax̂ · (m× ∂m) +D(mx +

ν

2Dγ
)2

)
x→∞

= D(mx +
ν

2Dγ
)2
x→∞ = D ± ν

γ
+D

(
ν

2Dγ

)2

=⇒ −∂my|x=0 =
D

2A
± ν

2Aγ
.
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D. Domain wall shedding

(D.3)

The spatial product of the exchange interaction term has no my contribution at x = 0.
The spatial derivative is bound to be perpendicular to ẑ because it is the magnetisation
direction. That is why the partial derivative of my is non-vanishing. Also, a constant

D
(

ν
2Dγ

)2
is independent of the spatial coordinate. At x → ∞, the exchange term

is vanishing as the magnetisation static. However, the anisotropy is equal for the
magnetisation pointing along the nanowire direction or antiparallel to it, which is
why the mx value can be either positive or negative ±1 depending on the type of the
domain wall. A head-to-head domain wall resolves to −1 and the tail-to-tail case to
+1 based on the geometry of the pinned nanowire.
The combination of both values, as they are equal, results in −∂my|x=0 = D

2A ±
ν

2Aγ .

The m independent constant D
(

ν
2Dγ

)2
contributes in both cases. That is why both

terms cancel in the last equation.
The same approach is used for the linear momentum case:(

A(∂m)2 + λm2
x

)
x=0

= A(∂m)2
x=0 and

(
A(∂m)2 + λm2

x

)
x→∞ = (λm2

x)x→∞ = λ

=⇒ (∂m)2
x=0 =

λ

A
.

(D.4)

For x = 0, the x component of m is zero and the partial derivative is
(∂m)2

x=0 = (∂mx)2
x=0 + (∂my)

2
x=0. In the case of x → ∞, the x component

depends on the domain wall type mx = ±1. Also, there is no spatial change of m.
Hence, the squared term is independent of the domain wall type.
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E. Ferromagnetic instability

The ferromagnetic instability condition for a one-dimensional nanowire system is de-
termined by linearising the LLG equation with spin-transfer torque terms. The per-
turbation is set to be orthogonal to the ground state with a plane wave ansatz for each
of the perturbation components. The determinant of the two-dimensional matrix can
be used to get a condition of the spin current up to which the system is stable. The
determinant has a quadratic dependency on the frequency ω.

0 = (1+α2)ω2−2((ν ·q)+iΛα+αβ(ν ·q))ω+(1+β2)(ν ·q)2−Λ2+2iβ(ν ·q)Λ. (E.1)

At first, the ”pq”-formula is applied to get the general dispersion relation:

(1 + α2)ω1/2 = ((1 + αβ)(ν · q) + iΛα)±√
((1 + αβ)(ν · q) + iΛα)2 − (1 + α2) [(1 + β2)(ν · q)2 − Λ2 + 2iβ(ν · q)Λ].

(E.2)

A factor of 1
1+α2 was pulled out of the square root, leaving a (1 + α2) factor at the

last part.

(1 + α2)ω1/2 = ((1 + αβ)(ν · q) + iΛα)±√
−(α2 + β2)(ν · q)2 + 2αβ(ν · q)2 + 2iΛ(α− β)(ν · q) + Λ2

(E.3)

Then, the binomial theorem (a+ b)2 = a2 + 2ab+ b2 is used to to rewrite the (ν · q)2

dependent term.

(1+α2)ω1/2 = (1+αβ)(ν ·q)+ iΛα±
√
−(α− β)2(ν · q)2 + 2iΛ(α− β)(ν · q) + Λ2

(E.4)

After that, the remaining square root terms are merged using the binomial theorem
again. Also, the minus in front of the first term in the square root is adapted to the
imaginary number −1 = i2.

(1 + α2)ω1/2 = (1 + αβ)(ν · q) + iΛα±
√

(i(α− β)(ν · q) + Λ)2 (E.5)

The combined squared expression cancels the square root, leading to the final version:

(1 + α2)ω1/2 = (1 + αβ)(ν · q) + iΛα± (i(α− β)(ν · q) + Λ) (E.6)
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