Dr. Sebastián A. Díaz

My research focuses on magnetic systems with robust and controllable excitations, such as spin waves and their quanta: magnons. Although my main interest is on fundamental phenomena, an important motivation is the potential use of these magnetic excitations in future low-power consumption devices.

Topological magnons in (anti)skyrmion crystals.


For citations and references please have a look at my Google Scholar profile

  1. J. Jena, B. Göbel, T. Hirosawa, S. A. Díaz, D. Wolf, T. Hinokihara, V. Kumar, I. Mertig, C. Felser, A. Lubk, D. Loss, and S. S. P. Parkin, "Observation of fractional spin textures in a Heusler material," Nat Commun 13, 2348 (2022)
  2. T. Hirosawa, J. KlinovajaD. Loss, and S. A. Díaz, "Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators," Phys. Rev. Lett. 128, 037201 (2022); [Journal Cover]
  3. J. Nothhelfer, S. A. Díaz, S. Kessler, T. Meng, M. Rizzi, K. M. D. Hals, and K. Everschor-Sitte, "Steering Majorana braiding via skyrmion-vortex pairs: a scalable platform," arXiv:2110.13983
  4. S. A. Díaz, J. Klinovaja, D. Loss, and S. Hoffman, "Majorana bound states induced by antiferromagnetic skyrmion textures," Phys. Rev. B 104, 214501 (2021)
  5. S. A. Díaz and K. Everschor-Sitte, "Der Quanten-Twist," Physik Journal 20 (2021) Nr. 11
  6. S. A. Díaz and D. P. Arovas, "Quantum Nucleation of Skyrmions in Magnetic Films by Inhomogeneous Fields," Memorial Volume for Shoucheng Zhang, pp. 19-33 (2021)
  7. A. Mook, S. A. Díaz, J. Klinovaja, and D. Loss, "Chiral hinge magnons in second-order topological magnon insulators," Phys. Rev. B 104, 024406 (2021)
  8. T. Hirosawa, S. A. Díaz, J. Klinovaja, and D. Loss, "Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals," Phys. Rev. Lett. 125, 207204 (2020)
  9. S. A. Díaz, T. Hirosawa, D. Loss, and C. Psaroudaki, "Spin Wave Radiation by a Topological Charge Dipole," Nano Lett. 20, 6556 (2020)
  10. S. A. Díaz, T. Hirosawa, J. Klinovaja, and D. Loss, "Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields," Phys. Rev. Research 2, 013231 (2020)
  11. S. A. Díaz, J. Klinovaja, and D. Loss, "Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals," Phys. Rev. Lett. 122, 187203 (2019); [Journal Cover]
  12. S. A. Díaz, C. Reichhardt, D. P. Arovas, A. Saxena, and C. J. O. Reichhardt, "Avalanches and Criticality in Driven Magnetic Skyrmions," Phys. Rev. Lett. 120, 117203 (2018)
  13. S. A. Díaz, C. J. O. Reichhardt, D. P. Arovas, A. Saxena, and C. Reichhardt, "Fluctuations and noise signatures of driven magnetic skyrmions," Phys. Rev. B 96, 085106 (2017)
  14. S. A. Díaz and R. E. Troncoso, "Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions," J. Phys.: Condens. Matter 28, 426005 (2016)
  15. S. A. Díaz and M. Di Ventra, "The role of measurement time on the universal crossover from 1/f to non-1/f noise behavior," J. Comput. Electron. 14, 203 (2015)
  16. S. A. Díaz and A. S. Núñez, "Current-induced exchange interactions and effective temperature in localized moment systems," J. Phys.: Condens. Matter 24, 116001 (2012); [Journal Cover]

Selected Invited Talks:

08/06/2021 "Skyrmiones Magnéticos" (in Spanish) Video
Physics Seminar
Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
Santiago, Chile.
07/03/2020 "Topological Magnonic Edge and Corner States in Skyrmion Crystals" Video
Online Spintronics Seminar Series
10/03/2019 "Skyrmion Crystals as Topological Magnonic Platforms" Video
Topomagnetism is Coming, Young Research Leaders Group Workshop
JGU Helmholtz-Institut
Mainz, Germany.